题目描述
思路
首先,本题是另外一个题的升级版,详细解答。这两个题都是用到了动态规划的思想,大的思路是差不多的。不过,这个题要复杂得多。解本题之前一定要先去看一看上一个题的思路。
本题思路,和上一个题一样,通过循环历遍每一个元素。以这个元素作为根节点,那么比它小的元素就只能是属于它的左子树,比它大的节点属于它的右子树。
那么剩下的问题,就是求左子树的所有可能的集合,和右子树的所有可能的集合。这两个问题和原问题本质上是一样求法。这样问题就被划分为了两个子问题。最后再将两边所有可能的组合都合起来,构成一棵树。
每当确定了一个根节点(最外层循环),之后的问题就是一个动态规划的问题。将所有可能的左子树的组合存在lefts中,右子树的可能组合放在rights中。最后再组合。
注意:在理解上,对这种递归问题,不要试图通过在脑海里一步一步推演验证,那样实在有些难。最好用递归的思想去理解
解答
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
vector<TreeNode*> res;
if(n<1) return res;
return genBST(1,n);
}
vector<TreeNode*> genBST(int start, int end) //该函数,返回的是从start开始,以enb结尾的元素生成搜索二叉树的集合
{
vector<TreeNode*> res;
if(start>end) res.push_back(NULL);
for(int i=start; i<=end; ++i) //根节点为 i时,生成二叉搜索树
{
vector<TreeNode*> lefts=genBST(start,i-1); //这里返回的是一个集合,表示以i 为根时,左子树可能的所有集合
vector<TreeNode*> rights=genBST(i+1,end); //右子树
for(auto left:lefts)
{
for(auto right:rights)
{
TreeNode* root=new TreeNode(i);
root->left=left;
root->right=right;
res.push_back(root);
}
}
}
return res;
}
};
Python
正好在网上看到一个Python解答,跟着练一练Python。自己还太弱。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def generateTrees(self, n):
"""
:type n: int
:rtype: List[TreeNode]
"""
if n<1:
return []
else:
return self.genBST(1,n)
def genBST(self,start,end):
res=[]
if(start>end):
return [None]
else:
for i in range(start,end+1):
lefts=self.genBST(start,i-1)
rights=self.genBST(i+1,end)
for left in lefts:
for right in rights:
root = TreeNode(i)
root.left = left
root.right = right
res.append(root)
return res