机器学习 深度学习
yuanliang861
西西弗斯式永不停歇
展开
-
论文阅读 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
本次阅读的论文是发表《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》,这是一篇经典文章。前段时间我自己手写resnet50网络的时候,其中采用了Batch Normalization(BN),我自己当时就不太理解,踩了一些坑。关于Batch Normaliat...原创 2018-10-27 15:11:03 · 1327 阅读 · 0 评论 -
卷积神经网络系列之softmax,softmax loss和cross entropy的讲解
https://blog.csdn.net/u014380165/article/details/77284921原创 2019-04-17 18:36:00 · 328 阅读 · 0 评论 -
Corner-Net 论文笔记
corner-Netanchor freetop-left and bottom right cornercorner poolingconv-Net生成:the heatmapsembeddingsoffsetswe do not use fea-tures from different scales to detect objects of different size...原创 2019-04-22 10:38:48 · 301 阅读 · 0 评论 -
目标检测~评价指标
准确率 (Accuracy),混淆矩阵 (Confusion Matrix),精确率(Precision),召回率(Recall),平均正确率(AP),mean Average Precision(mAP),交除并(IoU),ROC + AUC,非极大值抑制(NMS)。https://www.cnblogs.com/eilearn/p/9071440.html...原创 2019-04-08 22:07:30 · 732 阅读 · 0 评论 -
YOLO(You Only Look Once)算法详解+NMS算法
https://blog.csdn.net/u014380165/article/details/72616238转载 2019-03-31 17:38:10 · 1199 阅读 · 0 评论 -
YOLO(You Only Look Once)算法详解
https://blog.csdn.net/u014380165/article/details/72616238转载 2019-03-31 17:01:38 · 428 阅读 · 0 评论 -
faster Rcnn 知识汇总
ROI Poolinghttps://blog.csdn.net/lanran2/article/details/60143861原创 2019-03-12 18:50:27 · 104 阅读 · 0 评论 -
【转载】 CNN目标检测(一):Faster RCNN详解
申明: 这是一篇转载的文章 ,并非本人所写。原因,作者写得实在是太好了,我读了之后颇有收获,实在是不忍心将这篇文章放在bookmark中,所以就转载到自己这里了。虽然作者也是转载的,原创作者已经不知道是谁。尊重原创,感谢分享。原文地址:https://www.jianshu.com/p/de37451a0a77以下内容均为转载,没有个人添加。Faster RCNN g...转载 2018-10-16 11:01:45 · 391 阅读 · 0 评论 -
detectron运行自己数据集,NotImplementedError: No evaluator for dataset: my_dataset_val错误
testtest错误:No evaluator for dataset: my_dataset_val无论是在训练程序时,还是在运行test_net.py的时候,会出现这样的错误NotImplementedError: No evaluator for dataset: my_dataset_val这是由于更换了自己的数据集造成的。解决这个错误,在对应的.yaml文件的test中添加一...原创 2019-01-19 10:21:19 · 1086 阅读 · 7 评论 -
非线性降维--流形学习
流形就是很多曲面片的叠加,它在局部具有有欧式空间的性质。“流形学习”是一种非线性的维数约简方法。流形学习降维:就是找到一个从流形到欧式空间的映射经典方法:等距映射(Isomap)局部线性嵌入(LLE)拉普拉斯特征映射(LE)1.ISOMAP主要思想:希望在映射过程中保持流形上测地线的距离不变1.1测地距离测地距离是沿流形上的两点最短距离,而欧式距离是两点最短的那个直线距离。如...原创 2018-12-18 08:03:10 · 10044 阅读 · 0 评论 -
线性降维——主成分分析
高维数据会出现数据样本稀疏,距离计算困难,甚至连内积计算都很困难等问题,这些问题被称为“维数灾难”。主成分分析(PCA)当数据维数较高,并且数据之间多数情况下有一定的相关性,会使得问题的分析变得很复杂。主成分分析就是试图将原来的数据组合成一组新的相互无关的综合性指标的方法。选取主成分:(1)我们希望选区的主成分尽可能多的反映原始信息,衡量信息最经典的方法就是用方差来衡量,方差越大,包含的信...原创 2018-12-16 09:50:22 · 1240 阅读 · 0 评论 -
集成学习与常见算法-bagging、random forest、Boosting等
1.基本介绍**主要思想:**通过将多个学习器进行结合,获得比单一学习器更好的泛化能力。对个体学习器的要求:“好而不同”(1)个体学习器要有一定的准确性:单个学习器的准确度越高,集成学习器才可能越好。个体学习器不能太差,至少不能差于弱学习器。(弱学习器是指泛化性能略优于随机猜想的学习器)(2)个体学习器的多样性(差异性):学习器之间要有差异。常见集成学习器:下面的三种方法中,boost...原创 2018-12-15 11:32:59 · 6441 阅读 · 3 评论 -
聚类与常见聚类方法
K-Means算法介绍K均值算法将样本分为K类,是通过最小化簇内距离(平方误差)来实现的。E=∑i=1n∑x∈Ci∣∣x−ui∣∣22E=\sum_{i=1}^n \sum_{x\in{C_i}} ||x-u_i||_{2}^2E=i=1∑nx∈Ci∑∣∣x−ui∣∣22迭代过程:从样本集中随机选取K个样本作为初始的均值向量{u1,u2,⋯ ,...原创 2018-12-14 14:52:48 · 1724 阅读 · 0 评论