一百年沧桑巨变,数学大树依然长青

519 篇文章 7 订阅

一百年沧桑巨变,数学大树依然长青

在十九世纪初期,希尔伯特提出一个“大纲”,想给整个数学奠定一个牢不可破的基础。大纲内容如下(有三点):

1A formulation of all mathematics; in other words allmathematical statements should be written in a precise formal language, andmanipulated according to well defined rules.

2Consistency: a proof that no contradiction can be obtainedin the formalism of mathematics. This consistency proof should preferably useonly "finitistic" reasoning about finite mathematical objects.

3Decidability:there should be an algorithm for deciding the truth or falsity of anymathematical statement.

希尔伯特的上述“大纲”,虽然想法很好,可是,被哥德尔的“不完全性定理”打乱了,世界数学界似乎乱了套。

一百年来,世界数学界沧桑巨变,似乎看不到光明的前景。直到本世纪初,2005年,R.Zach发现,只要略微改变上述三点(目标),即可恢复希尔伯特当年的“大纲”,使数学大树依旧长青。

R,Zach的更改建议如下:

1Although itis not possible to prove completeness for systems at least as powerful as Peanoarithmetic (at least if they have a computable set of axioms), it is possibleto prove forms of completeness for many other interesting systems. The firstbig success was by Gödel himself (before he proved the incompleteness theorems)who proved the completenesstheorem for first-order logic,showing that any logical consequenceof a series of axioms is provable. An example of a non-trivial theory for whichcompleteness has been proved is the theory of algebraically closed fields ofgiven characteristic.

2The question of whether there are finitaryconsistency proofs of strong theories is difficult to answer, mainly becausethere is no generally accepted definition of a "finitary proof". Mostmathematicians in proof theory seem to regard finitary mathematics as beingcontained in Peano arithmetic, and in this case it is not possible to givefinitary proofs of reasonably strong theories. On the other hand, Gödel himselfsuggested the possibility of giving finitary consistency proofs using finitarymethods that cannot be formalized in Peano arithmetic, so he seems to have hada more liberal view of what finitary methods might be allowed. A few yearslater, Gentzen gave a consistency prooffor Peano arithmetic. The only part of this proof that was not clearly finitarywas a certain transfinite inductionup to the ordinal ε0. If this transfinite induction isaccepted as a finitary method, then one can assert that there is a finitaryproof of the consistency of Peano arithmetic. More powerful subsets of secondorder arithmetic have been given consistency proofs by Gaisi Takeuti and others, and one can againdebate about exactly how finitary or constructive these proofs are. (Thetheories that have been proved consistent by these methods are quite strong,and include most "ordinary" mathematics.)

3Althoughthere is no algorithm for deciding the truth of statements in Peano arithmetic,there are many interesting and non-trivial theories for which such algorithmshave been found. For example, Tarski found an algorithm that can decide thetruth of any statement in analytic geometry (more precisely, he proved thatthe theory of real closed fields is decidable). Given the Cantor–Dedekind axiom,this algorithm can be regarded as an algorithm to decide the truth of anystatement in Euclidean geometry.This is substantial as few people would consider Euclidean geometry a trivialtheory.

注:由此可见,无穷小微积分理论基础,坚如磐石,不受任何影响。

袁萌  1030

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值