在上世纪70年代,人民出版社出版发行了马克思数学手稿,在国内学界掀起悍然大波,各种说法都有。
马克思(1818-1883)一生酷爱数学,从19世纪40年代起,直到逝世前不久。根据《手稿》记载:“19世纪60年代以后,马克思陆续阅读了一大批微积分方面的书籍,其中有布沙拉(J.L.B.ucharlat)、辛德(J.Hind)、拉库阿(S.F.Lacr.ix)、霍尔(G.Hall)等人各自编写的微积分教科书,还有牛顿有关的数学原著等等,写下了详细的读书笔记。马克思对这些教科书进行比较,开始了自己对于微分学中一些问题的独立的思考。于1881年前后(去世前两年!),马克思撰写了关于微分学的历史发展进程、论导函数概念、论微分以及关于泰勒定理等问题的研究草稿,而且对于这些问题都曾写过多遍草稿,例如,关于泰勒定理留下了八份草稿。”。
根据《手稿》记载,马克思把从牛顿(1642—1727)、莱布尼茨(1646—1716)创建微分学到拉格朗日(J.L.Lagrange1736—1813)的发展,约一百多年的发展过程分为三个阶段,分别称为:“神秘的微分学”、“理性的微分学”、“纯代数的微分学”。在牛顿和莱布尼茨时期,新生的微积分很快在应用上获得了惊人的成功,但是从旧的传统数学看来,这种新算法,比如微分过程,正是通过不正确的数学途径得到正确的结果的。在同一个公式的推导过程中Δx和dx既作为有限的量,却又消失为零,在逻辑上显示出矛盾;时为什么能有确定的值,等等,都不能从理论上给出合理的解释。人们认为微分学是神秘的。牛顿和莱布尼茨,以及后继者们都希望给微分学找到合乎逻辑的说明,他们为此付出了很大的努力。以达朗贝尔(J.L.R.D’Alembert,1717-1783)为代表的“理性的微分学”和以拉格朗日为代表的“纯代数的微分学”,都是这种努力的一定阶段的成果。马克思指出:“这里,像在别处一样,给科学撕下神秘的面纱是重要的。”
马克思说::“这种新算法,比如微分过程,正是通过不正确的数学途径得到正确的结果的。”马克思的这句名言预示着现代非标准分析(无穷小微积分)的诞生!
此文为纪念马克思诞辰200周年而写。
马克思(1818-1883)一生酷爱数学,从19世纪40年代起,直到逝世前不久。根据《手稿》记载:“19世纪60年代以后,马克思陆续阅读了一大批微积分方面的书籍,其中有布沙拉(J.L.B.ucharlat)、辛德(J.Hind)、拉库阿(S.F.Lacr.ix)、霍尔(G.Hall)等人各自编写的微积分教科书,还有牛顿有关的数学原著等等,写下了详细的读书笔记。马克思对这些教科书进行比较,开始了自己对于微分学中一些问题的独立的思考。于1881年前后(去世前两年!),马克思撰写了关于微分学的历史发展进程、论导函数概念、论微分以及关于泰勒定理等问题的研究草稿,而且对于这些问题都曾写过多遍草稿,例如,关于泰勒定理留下了八份草稿。”。
根据《手稿》记载,马克思把从牛顿(1642—1727)、莱布尼茨(1646—1716)创建微分学到拉格朗日(J.L.Lagrange1736—1813)的发展,约一百多年的发展过程分为三个阶段,分别称为:“神秘的微分学”、“理性的微分学”、“纯代数的微分学”。在牛顿和莱布尼茨时期,新生的微积分很快在应用上获得了惊人的成功,但是从旧的传统数学看来,这种新算法,比如微分过程,正是通过不正确的数学途径得到正确的结果的。在同一个公式的推导过程中Δx和dx既作为有限的量,却又消失为零,在逻辑上显示出矛盾;时为什么能有确定的值,等等,都不能从理论上给出合理的解释。人们认为微分学是神秘的。牛顿和莱布尼茨,以及后继者们都希望给微分学找到合乎逻辑的说明,他们为此付出了很大的努力。以达朗贝尔(J.L.R.D’Alembert,1717-1783)为代表的“理性的微分学”和以拉格朗日为代表的“纯代数的微分学”,都是这种努力的一定阶段的成果。马克思指出:“这里,像在别处一样,给科学撕下神秘的面纱是重要的。”
马克思说::“这种新算法,比如微分过程,正是通过不正确的数学途径得到正确的结果的。”马克思的这句名言预示着现代非标准分析(无穷小微积分)的诞生!
此文为纪念马克思诞辰200周年而写。
袁萌 5月5日