首先,我们考虑两个有理数的无限数列:
(1) a(1),a(2),...,a(i),......,记为:{a(i)};
(2) b(1),b(2),...,b(i),......,记为:{b(i)}
此处,i= 1,2,3,4,5,......,(i为自然数,即集合{i}= N)
我们设想,这两个数列都是某种物理量的“度量”结果(度量过程的记录),指向相应的物理量,也叫“收敛于”某个实数。假定:
(3) ∀ε>0∃n>0【i> n ┃┃a(i)- b(i)┃≤ ε】
这时,我们可以证明这两个数列同时指向一个实际物理量(即实数。人们发现,条件”i> n“过于严格,能否再放宽一些?也就是说,不要求“处处””i> n”,而要求“几乎处处”条件“i>n”成立。什么叫“几乎处处”?所谓”几乎处处“:其实就是要求条件“i∈A”成立,而集合A是自然数集合的某类子集合,但是,集合A密集散布于自然数集合,几乎等同于自然数集合。布尔巴基学派首先定义了一种集合的集合{A},满足一定条件,称其为“超滤器”(Ultrafilter)。于是,
(4) {i ┃a(i)=b(i)} = A (此处,A属于某个超滤器)
成立,由此,我们可以证明(4)式也可以构成一种更为细致、精确的有理数列“等价类”的分类标准。据此,人们称其为“超实数”*R(Hyperreals)。这是1948年数学家Hewitt的工作。由此可见,超实数系*R也是物理量的度量理论模型(称为“连续统”,Continium)。我们接受实数系,就必须接受超实数系,实质上,两者都是有理数列的等价类。
在超实数系*R里面,我们可以举例证明存在所谓的”无穷小数“ε(是一种新型的”超实数“),也就是说,成立不等式
(5) 0<ε<1/n, ∀n ∈ N(自然数集合)。
至此,我们有了无穷小(超实数),故事就好讲下去了。有了超实数系*R,我们怎么在其上建立起新型的微积分(Calculus)呢?超实数系*R的微积分有什么特点呢?首先,在*R里面,我们可以说:x无限地接近a,只要x与a相差为”无穷小“。在*R里面,我们可以自由地说,变数n”等于“无穷大(因为1/ε就是一个无穷大,只要ε不为零)。
实际上,超实数系*R与实数系R的关系十分密切,*R是R的扩张,在*R里面,我们就有话”好说“了。这是什么意思呢?什么叫有话”好说“?超实数系*R上面的微积分还能不能用于物理学?正弦Sin的导数还是不是余弦Cos?且听下回分解也。