什么是超实数系*R(Hyperreals)?

      首先,我们考虑两个有理数的无限数列:

       1a(1)a(2)...a(i)......,记为:{a(i)}

    (2)  b(1)b(2)...b(i)......,记为:{b(i)}

    此处,i= 12345......(i为自然数,即集合{i}= N)   

    我们设想,这两个数列都是某种物理量的“度量”结果(度量过程的记录),指向相应的物理量,也叫“收敛于”某个实数。假定:

3)              ∀ε>0n>0i> n ┃┃a(i)- b(i)┃≤ ε

    这时,我们可以证明这两个数列同时指向一个实际物理量(即实数。人们发现,条件”i> n“过于严格,能否再放宽一些?也就是说,不要求“处处””i> n”,而要求“几乎处处”条件“i>n”成立。什么叫“几乎处处”?所谓”几乎处处“:其实就是要求条件“i∈A”成立,而集合A是自然数集合的某类子集合,但是,集合A密集散布于自然数集合,几乎等同于自然数集合。布尔巴基学派首先定义了一种集合的集合{A},满足一定条件,称其为“超滤器”(Ultrafilter)。于是,

     4{i a(i)=b(i)} =  A (此处,A属于某个超滤器)

成立,由此,我们可以证明(4)式也可以构成一种更为细致、精确的有理数列“等价类”的分类标准。据此,人们称其为“超实数”*RHyperreals)。这是1948年数学家Hewitt的工作。由此可见,超实数系*R也是物理量的度量理论模型(称为“连续统”,Continium)。我们接受实数系,就必须接受超实数系,实质上,两者都是有理数列的等价类。

在超实数系*R里面,我们可以举例证明存在所谓的”无穷小数“ε(是一种新型的”超实数“),也就是说,成立不等式

        50<ε<1/n, ∀n ∈ N(自然数集合)。

        至此,我们有了无穷小(超实数),故事就好讲下去了。有了超实数系*R,我们怎么在其上建立起新型的微积分(Calculus)呢?超实数系*R的微积分有什么特点呢?首先,在*R里面,我们可以说:x无限地接近a,只要xa相差为”无穷小“。在*R里面,我们可以自由地说,变数n”等于“无穷大(因为1/ε就是一个无穷大,只要ε不为零)。

       实际上,超实数系*R与实数系R的关系十分密切,*RR的扩张,在*R里面,我们就有话”好说“了。这是什么意思呢?什么叫有话”好说“?超实数系*R上面的微积分还能不能用于物理学?正弦Sin的导数还是不是余弦Cos?且听下回分解也。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值