希尔伯特《几何学基础》的章节目录

希尔伯特《几何学基础》是世界数学名著、数学公理化的楷模,用多种语言出版,世界范围发行,影响十分深远、巨大。

该书章节目录收录在本文附件之中。读者快速浏览此章节目录可对此书内容有个大致了解。

该书内容如下:

导言

第一章 五组公理

第二章 公理的相容性和互相独立性

第三章 比例论

第四章 平面中的面积论

第五章 德沙格定理

第六章 巴斯噶定理

第七章 根据公理Ⅰ~Ⅳ的几何作图

结束语

我们的目的很明确:切实把连环画微积分教科书与希尔伯特《几何学基础》内容加以“对接”,以便提升公理化微积分教育水平。

袁萌  陈启清  3月12日

附件:

Foundations of Geometry

BY DAVID HILBERT, PH. D.

PROFESSOR OF MATHEMATICS, UNIVERSITY OF G TTINGEN

AUTHORIZED TRANSLATION BY E. J. TOWNSEND, PH. D.

UNIVERSITY OF ILLINOIS

REPRINT EDITION

THE OPEN COURT PUBLISHING COMPANY

LA SALLE ILLINOIS

1950

TRANSLATION COPYRIGHTED

BY The Open Court Publishing Co.

1902.

PREFACE.

The material contained in the following translation was given in substance by Professor Hilbert as a course of lectures on euclidean geometry at the University of G ttingen during the winter semester of 1898–1899. The results of his investigation were re-arranged and put into the form in which they appear here as a memorial address published in connection with the celebration at the unveiling of the Gauss-Weber monument at G ttingen, in June, 1899. In the French edition, which appeared soon after, Professor Hilbert made some additions, particularly in the concluding remarks, where he gave an account of the results of a recent investigation made by Dr. Dehn. These additions have been incorporated in the following translation. As a basis for the analysis of our intuition of space, Professor Hilbert commences his discussion by considering three systems of things which he calls points, straight lines, and planes, and sets up a system of axioms connecting these elements in their mutual relations. The purpose of his investigations is to discuss systematically the relations of these axioms to one another and also the bearing of each upon the logical development of euclidean geometry. Among the important results obtained, the following are worthy of special mention: 1. The mutual independence and also the compatibility of the given system of axioms is fully discussed by the aid of various new systems of geometry which are introduced. 2. The most important propositions of euclidean geometry are demonstrated in such a manner as to show precisely what axioms underlie and make possible the demonstration. 3. Theaxiomsofcongruenceareintroducedandmadethebasisofthede nitionofgeometric displacement. 4. The signi cance of several of the most important axioms and theorems in the development of the euclidean geometry is clearly shown; for example, it is shown that the whole of the euclidean geometry may be developed without the use of the axiom of continuity; the signi cance of Desargues’s theorem, as a condition that a given plane geometry may be regarded as a part of a geometry of space, is made apparent, etc. 5. Avarietyofalgebrasofsegmentsareintroducedinaccordancewiththelawsofarithmetic. This development and discussion of the foundation principles of geometry is not only of mathematical but of pedagogical importance. Hoping that through an English edition these important results of Professor Hilbert’s investigation may be made more accessible to English speaking students and teachers of geometry, I have undertaken, with his permission, this translation. In its preparation, I have had the assistance of many valuable suggestions from Professor Osgood of Harvard, Professor Moore of Chicago, and Professor Halsted of Texas. I am also under obligations to Mr. Henry Coar and Mr. Arthur Bell for reading the proof.

E. J. Townsend

University of Illinois.

CONTENTS

PAGE  Introduction ........... 1

CHAPTER I. THE FIVE GROUPS OF AXIOMS.

§ 1. The elements of geometry and the  ve groups of axioms ........... 2

§ 2. Group I: Axioms of connection ... 2

§ 3. Group II: Axioms of Order ...3

§ 4. Consequences of the axioms of connection and order ... 5

§ 5. Group III: Axiom of Parallels (Euclid’s axi.. 7

§ 6. Group IV: Axioms of congruence ....... 8

§ 7. Consequences of the axioms of congruence ...... 10

§ 8. Group V: Axiom of Continuity (Archimedes’s axiom) .... 15

CHAPTER II. THE COMPATIBILITY AND MUTUAL INDEPENDENCE OF THE AXIOMS.

§ 9. Compatibility of the axioms ....... 17

§10. Independence of the axioms of parallels. Non-euclidean geometry ... 19

§11. Independence of the axioms of congruence ... 20

§12. Independence of the axiom of continuity. Non-archimedean geometry   21

CHAPTER III. THE THEORY OF PROPORTION.

§13. Complex number-systems . 23

§14. Demonstration of Pascal’s theorem .... 25

§15. An algebra of segments, based upon Pascal’s theorem ..... 30

§16. Proportion and the theorems of similitude ..... 32

§17. Equations of straight lines and of planes ...... 35

CHAPTER IV. THE THEORY OF PLANE AREAS.

§18. Equal area and equal content of p.... 38

§19. Parallelograms and triangles having equal bases and equal altitudes . 40

§20. The measure of area of triangles and polygons ....... 41

§21. Equality of content and the measure of area ....... 44

CHAPTER V. DESARGUES’S THEOREM.

§22. Desargues’s theorem and its demonstration for plane geometry by aid of the axioms of congruence .... 45

§23. The impossibility of demonstrating Desargues’s theorem for the plane without the help of the axioms of congruence

50

§24. Introduction of an algebra of segments based upon Desargues’s theorem and independent of the axioms of congruence .......... 53

§25. The commutative and the associative law of addition for our new algebra of segments ..... 55

§26. The associative law of multiplication and the two distributive laws for the new algebra of segments .......... 56

§27. Equation of the straight line, based upon the new algebra of segments ... 61

§28. The totality of segments, regarded as a complex number system .... 64

§29. Construction of a geometry of space by aid of a desarguesian number system ......... 65

§30. Signi cance of Desargues’s theorem ....................... 67

CHAPTER VI. PASCAL’S THEOREM.

§31. Two theorems concerning the possibility of proving Pascal’s theorem .... 68

§32. The commutative law of multiplication for an archimedean number system ................. 68

§33. The commutative law of multiplication for a non-archimedean number system ...................... 70

§34. Proof of the two propositions concerning Pascal’s theorem. Non-pascalian geometry. ...... 72

§35. The demonstration, by means of the theorems of Pascal and Desargues, of any theorem relating to points of intersection ............... 73

CHAPTER VII. GEOMETRICAL CONSTRUCTIONS BASED UPON THE AXIOMS I–V.

§36. Geometrical constructions by means of a straight-edge and a transferer of segments ............. 74

§37. Analytical representation of the co-ordinates of points which can be so constructed ..... 76

§38. The representation of algebraic numbers and of integral rational functions as sums of squares ... 78

§39. Criterion for the possibility of a geometrical construction by means of a straight-edge and a transferer of segments . 80 Conclusion .... 83

“All human knowledge begins with intuitions, thence passes to concepts and ends with ideas.” Kant, Kritik der reinen Vernunft, Elementariehre, Part 2, Sec. 2.

INTRODUCTION.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值