我国实现数学现代化的必由之路

我国实现数学现代化的必由之路
   从现在开始,培养一代新人是我国实现数学现代化的必由之路。为什么?
    如果仔细研读本文附件文章,那么,任何人都会得出“我国实现数学现代化的必由之路”的结论。
   我们的期盼:顺应历史发展潮流,克服陈旧观念,共同走向中国数学的明天。
袁萌   陈启清   6月20日
附件:j.Keisler为无穷小微积分教科书写的前言,语重心长,国内高校数学教师必读。
PREFACE(为无穷小微积分基础写的前言)
In 1960 Abraham Robinson (1918–1974) solved the three hundred year old problem of giving a rigorous development of the calculus based on infinitesimals. Robinson’s achievement was one of the major mathematical advances of the twentieth century. This is an exposition of Robinson’s infinitesimal calculus at the advanced undergraduate level. It is entirely self-contained but is keyed to the 2000 digital edition of my first year college text Elementary Calculus: An Infinitesimal Approach [Keisler 2000] and the second printed edition [Keisler 1986]. Elementary Calculus: An Infinitesimal Approach is available free online at www.math.wisc.edu/∼Keisler/calc. This monograph can be used as a quick introduction to the subject for mathematicians, as background material for instructors using the book Elementary Calculus, or as a text for an undergraduate seminar. This is a major revision of the first edition of Foundations of Infinitesimal Calculus [Keisler 1976], which was published as a companion to the first (1976) edition of Elementary Calculus, and has been out of print for over twenty years. A companion to the second (1986) edition of Elementary Calculus was never written. The biggest changes are: (1) A new chapter on differential equations, keyed to the corresponding new chapter in Elementary Calculus. (2) The axioms for the hyperreal number system are changed to match those in the later editions of Elementary Calculus. (3) An account of the discovery of Kanovei and Shelah [KS 2004] that the hyperreal number system, like the real number system, can be built as an explicitly definable mathematical structure. Earlier constructions of the hyperreal number system depended on an arbitrarily chosen parameter such as an ultrafilter. The basic concepts of the calculus were originally developed in the seventeenth and eighteenth centuries using the intuitive notion of an infinitesimal, culminating in the work of Gottfried Leibniz (1646-1716) and Isaac Newton (1643-1727). When the calculus was put on a rigorous basis in the nineteenth century, infinitesimals were rejected in favor of the ε,δ approach, because mathematicians had not yet discovered a correct treatment of infinitesimals. Since then generations of students have been taught that infinitesimals do not exist and should be avoided.
The actual situation, as suggested by Leibniz and carried out by Robinson, is that one can form the hyperreal number system by adding infinitesimals to the real number system, and obtain a powerful new tool in analysis. The reason Robinson’s discovery did not come sooner is that the axioms needed to describe the hyperreal numbers are of a kind which were unfamiliar to mathematicians until the mid-twentieth century. Robinson used methods from the branch of mathematical logic called model theory which developed in the 1950’s. Robinson called his method nonstandard analysis because it uses a nonstandard model of analysis. The older name infinitesimal analysis is perhaps more appropriate. The method is surprisingly adaptable and has been applied to many areas of pure and applied mathematics. It is also used in such fields as economics and physics as a source of mathematical models. (See, for example, the books [AFHL 1986] and [ACH 1997]). However, the method is still seen as controversial, and is unfamiliar to most mathematicians. The purpose of this monograph, and of the book Elementary Calculus, is to make infinitesimals more readily available to mathematicians and students. Infinitesimals provided the intuition for the original development of the calculus and should help students as they repeat this development. The book Elementary Calculus treats infinitesimal calculus at the simplest possible level, and gives plausibility arguments instead of proofs of theorems whenever it is appropriate. This monograph presents the subject from a more advanced viewpoint and includes proofs of almost all of the theorems stated in Elementary Calculus. Chapters 1–14 in this monograph match the chapters in Elementary Calculus, and after each section heading the corresponding sections of Elementary Calculus are indicated in parentheses. In Chapter 1 the hyperreal numbers are first introduced with a set of axioms and their algebraic structure is studied. Then in Section 1G the hyperreal numbers are built from the real numbers. This is an optional section which is more advanced than the rest of the chapter and is not used later. It is included for the reader who wants to see where the hyperreal numbers come from. Chapters 2 through 14 contain a rigorous development of infinitesimal calculus based on the axioms in Chapter 1. The only prerequisites are the traditional three semesters of calculus and a certain amount of mathematical maturity. In particular, the material is presented without using notions from mathematical logic. We will use some elementary set-theoretic notation familiar to all mathematicians, for example the function concept and the symbols ∅,A∪B,{x ∈ A: P(x)}. Frequently, standard results are given alternate proofs using infinitesimals. In some cases a standard result which is beyond the scope of beginning calculus is rephrased as a simpler infinitesimal result and used effectively in Elementary Calculus; some examples are the Infinite Sum Theorem, and the two-variable criterion for a global maximum.
Preface ix
The last chapter of this monograph, Chapter 15, is a bridge between the simple treatment of infinitesimal calculus given here and the more advanced subject of infinitesimal analysis found in the research literature. To go beyond infinitesimal calculus one should at least be familiar with some basic notions from logic and model theory. Chapter 15 introduces the concept of a nonstandard universe, explains the use of mathematical logic, superstructures, and internal and external sets, uses ultrapowers to build a nonstandard universe, and presents uniqueness theorems for the hyperreal number systems and nonstandard universes. The simple set of axioms for the hyperreal number system given here (and in Elementary Calculus) make it possible to present infinitesimal calculus at the college freshman level, avoiding concepts from mathematical logic. It is shown in Chapter 15 that these axioms are equivalent to Robinson’s approach. For additional background in logic and model theory, the reader can consult the book [CK 1990]. Section 4.4 of that book gives further results on nonstandard universes. Additional background in infinitesimal analysis can be found in the book [Goldblatt 1991]. I thank my late colleague Jon Barwise, and Keith Stroyan of the University of Iowa, for valuable advice in preparing the First Edition of this monograph. In the thirty years between the first and the present edition, I have benefited from equally valuable and much appreciated advice from friends and colleagues too numerous to recount here,


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值