第6.2节 旋转体的体积

6.2  VOLUMES  OF  SOLIDS  OF  REVOLUTION

Integralsare used in this section to find the volume of a solid of revolution.A solid of revolution is generated by taking a region in the firstquadrant of the plane and rotating it in space about thex -or y-axis(Figure 6.2.1).

 

 

 

 

 

 

 

 

 

 

Figure 6.2.1  Solids of Revolution

 

Weshall work with the region under a curve and the region between twocurves. We use one method for rotating about the axis of theindependent variable and another for rotating about the axis of thedependent variable.

 

Forareas our starting point was the formula

                          area =base × height

 

forthe area of a rectangle. For volumes of a solid of revolution ourstarting point is the usual formula for the volume of a rightcircular cylinder (Figure 6.2.2)

 

 

 

 

 

Figure6.2.2

 

DEFINITION

Thevolume of a right circular cylinder with height h and base of radiusr is

                       V =π r² h.

 

DISCMETHOD :  Forrotations about the axis of the independent variable.

 

Letus first consider the region under a curve. Let R be the region undera curve y= f(x)fromx=a tox = b,shown in figure 6.2.3(a).x isthe independent

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.2.3

 

Variablein this case. To keep Rinthe first quadrant we assume 0aband 0f(x).RotateR aboutthe x-axis,generating the solid of revolution Sshownin Figure 6.2.3(b).

 

Thisvolume is given by the formula below.

 

VOLUME BY  DISC  METHOD   V=______π(f(x)²dx.

 

Tojustify this formula we slice the region Rintovertical strips of infinitesimal width  Δx. This slices thesolid S intodiscs of infinitesimal thickness Δx.Each disc is almost a cylinder of height Δxwhosebase is a circle of radius f(x)(Figure6.2.4). Therefore

                           ΔV=_______π(f(x))²Δx.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.2.4  Disc Method

 

EXAMPLE1 Find the volume of a right circular cone with height h andbase of radius r .

        It isconvenient to center the cone on the x-axis with its vertex at theorigin as shown in Figure 6.2.5. This cone is the solid generated byrotating about the x- axis the triangular region R under the line y=(r/h) x, 0xh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.2.5

Sincex is the independent variable we use the Disc Method. Thevolume formula gives

 

 

 

 

Or

 

 

 

Nowwe consider the region R between two curves y= f(x) andy= g(x) from x=a to x=b. Rotating R aboutthe x-axis generates a solid of revolution S shown inFigure 6.2.6(c).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.2.6

 

LetR1 be the region under the curve y= f(x) shown in Figure6.2.6(b) , and R2, the region under the curve y= g(x),shown in Figure 6.2.6(a). Then S can be found by removing thesolid of revolution S1 generated by R1 from the solid of revolutionS2 generated by R2. Therefore

 

                      Volume ofS = volume of S2 - volume of S1.

 

 

 

 

 

 

Thisjustifies the formula

 

 

 

 

Wecombine this into a single integral.

VOLUMEBY DISC METHOD     V = _____π[(g(π))² - (f(x))²] dx.

 

Anotherway to see this formula is to divide the solid into annular discs(washers) with inner radius f(x)andouter radius g(x),as illustrated in Figure 6.2.7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.2.7

EXAMPLE 2 The region Rbetweenthe curves y=2-x²andy=x²isrotated about the x-axis

              generating asolid S.Find the volume of S.

              The curvesy=2-x²andy=x²crossat x=___1.The region is sketched in

              Figure 6.2.8.The volume is

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure6.2.8

Warning: When using the disc method for a region between two curves, thecorrect formula is

 

 

 

or

 

 

 

Acommon mistake is to subtract f(x)fromg(x) beforesquaring.

           Wrong:      V= ____π(g(x) - f(x))² dx.

           Wrong:(for Example2):

 

                        V= ____ π(2-x²) -x²)-x²)²dx =_____π(2 - 2x²)² dx.

                      =_______π(4-8x² +4 x4)dx = 64π / 15.

 

 

CYLINDRICAL SHELL  METHOD:

Forrotations about the axis of the dependent variable.

Letus again consider the region R undera curve y=f(x)fromx= a tox=b,so that x isstill the

independentvariable. This time rotate Raboutthe y-axisto generate a solid of revolution S

(Figure6.2.9).

 

VOLUME BY  CYLINDRICAL  SHELL  METHOD   V= ____ 2πx f(x) dx.

 

Letus justify this formula. Divide Rintovertical strips of infinitesimal width Δxasshown in Figure 6.2.10. When a vertical strip is rotated about they-axisit generates a cylindrical shell of thickness Δxandvolume ΔV.This cylindrical shell is the difference between an outer cylinder ofradius x+Δxandan inner cylinder of radius Δx.Both cylinders have height infinitely close to f(x).Thus compared to Δx,

 

 

 

 

 

 

         

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

           ΔVouter cylinder - inner cylinder

            ≈ π(x+ Δx)²f(x) - πx² f(x)

            = π(x²+ 2xΔx+(Δx)²-x²) f(x)

            = π(2xΔx+(Δx)²f(x) π 2xΔxf(x),

 

Whence   ΔV 2π x f(x)Δx,      (compared to Δx).

 

Bythe Infinite Sum Theorem,

                       V=______2π x f(x)dx.

 

EXAMPLE 3   The region R betweenthe line y=0 and the curve y= 2x- x²is

     rotated aboutthe y-axisto form a solid of revolution S.Find the volume of S.

     We usethe cylindrical shell method because yisthe dependent variable. We

     see thatthe curve crosses the x-axisx=0 and x=2,and sketch the region in

 

      Figure 6.2.11.The volume is

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6.2.11

 

Nowlet R be the region between the curves y=f(x)andy= g(x) fora x b, and generate the solid S byrotating R about the y=axis. The volume of S canbe found by subtracting the volume of the solid S1 generatedby the region under y= f(x) from the volume of the solid S2generated by the region under y=g(x) ( Figure 6.2.12). Theformula for the volume is

                V=S2 - S1 = ____ 2πxg(x)dx- _____ 2π x f(x)dx.

 

Combininginto one integral, we get

 

VOLUMEBY CYLINDRICAL SHELL METHOD    V = ___2πx (g(x) -f(x)) dx.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

EXAMPLE4  The region between the curves y=x and y=___is rotated about the y-axis.

            Find thevolume of the solid of revolution.

            We makea sketch in Figure 6.2.13 and find that the curves cross at x=0and

            x=1.We take x for the independent variable and use the CylindricalShell

            Method.

 

 

 

 

Someregions R aremore easily described by taking yasthe independent variable, so that Risthe region between x=f(y) andx=g(y) forc y d.Thevolumes of the solids of revolution are then computed by integratingwith respect to y.Often we have a choice of either x ory asthe independent variable.

 

 

 

 

 

 

 

 

 

 

 

 

Howcan one decide whether to use the Disc or Cylindrical Shell Method?The answer depends on both the axis of rotation and the choice ofindependent variable. Use the Disc Method when rotating about theaxis of the independent variable. Use the Cylindrical Shell Methodwhen rotating about the axis of the dependent variable.

 

EXAMPLE5   Derive the formula V= ___πr3 for the volume of a sphere by both the Disc

             Method andthe Cylindrical Shell Method.

             The circleof radius r and center at the origin has the equation.

                  x²+ y² = r²

 

Theregion R inside this circle in the first quadrant willgenerate a hemisphere of radius r when it is rotated about thex-axis( Figure 6.2.14).

 

Firsttake x as the independent variable and use the Disc Method. Ris the region under the curve

                   y=________________,      0x r.

 

Thehemisphere has volume

 

 

 

 

Thereforethe sphere has volume

                                 V=____ πr3.

 

 

Nowtake y as the independent variable and use the Cylindrical ShellMethod.

Ris the region under the curve.

 

              x=_______0y r.

Thehemisphere has volume

              

 

 

 

Putting u = r² - y² , du = -2 y dy, we get

 

 

 

Thusagain V=____

   

PROBLEMS FOR  SECTION  6.2

InProblems 1-10 the region under the given curve is rotated about (a)the x-axis,(b) the y-axis.

 

 

Sketchthe region and find the volumes of the two solids of revolution.

1   y= x²,   0x1                 2    y= x3,    0x

3   y= ___ , 0x4                 4    y=_______,2 x4

5   y= 1-x,  0x1                 6    y=x,     1x2

7   y= ____, 0x1                 8    y= ____,  2x4  

9   y= x -3,   1x2                 10   y=1/x,   1x2

 

InProblems 11-22 the region bounded by the given curves is rotatedabout (a) the x-axis,(b) the y-axis.Sketch the region and find the volumes of the two solids ofrevolution.

 

11   x, y 0,  y =_________                   12   y = 0,     y = x - x²

13   y = x,     y = 2x, 0x3                 14    y = x²,    y = x,

15   y = x3,    y =x²                            16   y = 3/x,   y = 4- x

17   x =0,     x= y-y4                                     18   x = y,     x= 2y-y²  

19   x =0,     x= y+1/ y, 1y2

20   x 0,    y 0,2x²+ y² = 4

21   y=0 ,     y = x-2,    y= _______

22   y=___ x,  y = 1 - x,    y= x - 1/x  (first quadrant )

 

InProblems 23-34 the region under the given curve is rotated about thex-axis.Find the volume of the solid of revolution.

23   y=____,0 xπ

24   y=cos x______, 0 xπ/2

25   y=cosx -sin x, ,  0 xπ/4

26   y= sin(x/2)+ cos(x/2), 0 xπ

27   y =ex, 0 x1                    28    y =e1-2x, 0 x2

29   y =xex3, 0 x1                   30    y=_____,0 x3

31   y =1/___,1 x2                   32    y =___,0 x

33   y =___,1 x4                    34   y =___,0 x1

 

InProblems 35-46 the region is rotated about the x-axis.Find the volume of the solid of revolution.

 

35    y =________ /2 xπ                36  y =________ /6 xπ/2   

37    y =sin (x²),  0 x_____             38  y =cos (x²'),  0 x_____

39    y =ex², 0 x1                       40   y =ex/x, 1 x2

41    y =1/x ex, 1 x4                     42   y =xex3, 1 x2

43

45

47    A hole of radius aisbored through the center of a sphere of radius r(a <r).Find the

      volume ofthe remaining part of the sphere.

48    A sphere of radius riscut by a horizontal plane at a distance cabovethe center of the

      sphere. Findthe volume of the part of the sphere above the plane (c< r ).

 

49     A hole of radius aisbored along the axis of a cone of height handbase of radius r.

       Find theremaining volume (a < r).

50 Find the volume of the solid generated by rotating an ellipse a²x²+ b²y² =1 about the x-axis.

   Hint:theportion of the ellipse in the first quadrant will generate half thevolume.

51 the sector of a circle shown in the figure is rotated about(a) thex-axis,(b) the y-axis.

   Find thevolumes of the solids of revolution.

 

 

 

 

 

 

 

 

52 The region bounded by the curves y = x², y=x isrotated about (a) the line y= -1, (b) the line

x=-2. Find the volumes of the solids of revolution.

53 Find the volume of the torus ( donut ) generated by rotating thecircle of radius r with center

at(c,0) around the y-axis ( r <0 ).

54(a) Find a general formula for the volume of the solid of revolutiongenerated by rotating the

    region boundedby the curves y=f(x), y=g(x), a xb, aboutthe line y= -k.

    (b) Dothe same for a rotation about the line x = -h.

 

 

 

 

首先,给定星形线方程为 $x = a\cos 3t,\ y = a\sin 3t$,其中 $a$ 为常数。 1. 求面积: 由于星形线方程是极坐标方程,因此可以使用极坐标下的面积公式计算: $$A = \frac{1}{2} \int_{0}^{2\pi} (r(\theta))^2 d\theta$$ 其中,$r(\theta)$ 是星形线方程对应的极径,即 $r(\theta) = a$。 带入公式,得到: $$A = \frac{1}{2} \int_{0}^{2\pi} a^2 d\theta = \frac{1}{2} \cdot a^2 \cdot 2\pi = \pi a^2$$ 因此,星形线所围成的面积为 $\pi a^2$。 2. 求弧长: 同样地,可以使用极坐标下的弧长公式计算: $$L = \int_{0}^{2\pi} \sqrt{(r(\theta))^2 + (r'(\theta))^2} d\theta$$ 其中,$r'(\theta)$ 是星形线方程对应的极径的导数,即 $r'(\theta) = -3a\sin 3t$。 带入公式,得到: $$L = \int_{0}^{2\pi} \sqrt{a^2 + 9a^2\sin^2 3t} dt$$ 这个积分比较复杂,需要使用椭圆积分求解。最终结果为: $$L = \int_{0}^{2\pi} \sqrt{a^2 + 9a^2\sin^2 3t} dt = \frac{4a}{3} E\left(\frac{1}{2}\right)$$ 其中,$E(\frac{1}{2})$ 是第二类椭圆积分,其近似值为 $1.350643$。因此,星形线的弧长为 $\frac{4a}{3} E\left(\frac{1}{2}\right)$。 3. 求旋转体体积: 将星形线绕 $x$ 轴旋转一周,得到的旋转体是一个旋转半径为 $y$ 的圆柱体。因此,可以使用圆柱体的体积公式计算旋转体体积: $$V = \pi \int_{-a}^{a} y^2 dx$$ 将 $x$ 和 $y$ 用 $t$ 表示,得到: $$V = \pi \int_{0}^{2\pi} (a\sin 3t)^2 (3a\cos 3t) dt = \frac{4\pi}{9}a^3$$ 因此,星形线绕 $x$ 轴旋转而成的旋转体体积为 $\frac{4\pi}{9}a^3$。 4. 求侧面积: 旋转体的侧面积可以通过将旋转体展开成一个矩形再减去两个圆的面积来计算。具体来说,可以先计算旋转体的高度 $h$ 和底边长 $l$,然后用 $2lh + 2\pi a^2$ 计算侧面积。 旋转体的高度等于星形线的弧长,即: $$h = \frac{4a}{3} E\left(\frac{1}{2}\right)$$ 旋转体的底边长等于星形线的周长,即: $$l = \int_{0}^{2\pi} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$ 其中,$x'(t)$ 和 $y'(t)$ 分别是星形线方程对应的横坐标和纵坐标的导数。带入公式,得到: $$l = \int_{0}^{2\pi} \sqrt{(3a\cos 3t)^2 + (3a\sin 3t)^2} dt = 6a\pi$$ 因此,旋转体的侧面积为: $$S = 2lh + 2\pi a^2 = \frac{8\pi}{3}a^2 E\left(\frac{1}{2}\right) + 2\pi a^2$$ 综上所述,星形线所围成的面积为 $\pi a^2$,弧长为 $\frac{4a}{3} E\left(\frac{1}{2}\right)$,绕 $x$ 轴旋转而生成的旋转体体积为 $\frac{4\pi}{9}a^3$,侧面积为 $\frac{8\pi}{3}a^2 E\left(\frac{1}{2}\right) + 2\pi a^2$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值