再谈微积分学的公理化

    今年316日,在“袖珍电子书:关于微积分学的公理化”一文中,我们首次接触到现代微积分学的公理化问题,当时有些话没有说透,今天再议。

              在袖珍电子书“基础微积分后记(Epilogue)”里面,J.Keisler教授说:“All the familiar facts about the real numbers can be proved using only these axioms”,意思是说,所有熟知的有关实数(包括传统微积分学)的事实(定理)都可以从以下三组公理导出:

1. ALGEBRAIC AXIOMS FOR THE REAL NUMBERS

A Closure laws 0 and 1 are real numbers. If a and b are real numbers, then so are a + b, ab and -a. If a is a real number and a0,then 1/a is a real number.

B   Commutative laws     a+b= b+a  ab = ba

C   Associative laws      a+(b+c)= (a+b) + c a(bc) = (ab)c.

D   Identitylaws       0+a = a               1·a =a .

E   Inverse laws         a+ (-a)=0 if a0,a(1/a)=1                                                     

F   Distributive law        a·(b + c)= ab + ac

 

DEFINITION

         The positive integers are the real numbers 1,2 = 1+1, 3 = 1+1+1 ,4 = 1+1+1+1 , and so on.

II.ORDER AXIOMS FOR REAL NUMBERS

A   0<1.

B   Transitive law  if a< b and b< c.

C   Trichotomy law Exactly one of the relations a<b,a=b,a>b holds.

D   Sum law  If a< b , then a+c < b+c.

E   product law  If a <b and 0 < c, then ac < bc .

F   Root axiom   For every real number a > 0 and everypositive integer n, there is a real number b > 0 such that bn次方=a

. COMPLETENESS AXIOM

Let A be a set of real numbers such that whenever x and y are in A, any real number between x and y is in A. Then A is an interval.

        从上述三组公理(IIIIII)出发,我们可以建立起实数系R的数学大厦(即定理系统,其中包括微积分学的定理体系)。满足这套公理体系的数学模型都是“同构”的。实际上,函数、极限、导数、微分与积分等都是一些数学定义(概念)而已。有了这种眼光,看待微积分学的角度就不同了,微积分如同平面几何、高学代数。但是,无穷小不在这套体系之中(无穷小没有容身之地)。那么,我们该怎么办呢?且听下回分解。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值