【浅谈递归(一)】递归的基本思想

1、递归简述

递归作为编程里最为重要的编程方法之一,其对于解决某些复杂的问题十分有效,并且相对于迭代,其过程在直观上更容易理解。而且不像迭代自己需要维护许多变量,递归也更容易实现。

2、递归的基本思想

递归并不是简单的自己调用自己,也不是简单的交互调用。递归在于把问题分解成规模更小、具有与原来问题相同解法的问题,如二分查找以及求集合的子集问题。这些都是不断的把问题规模变小,新问题与原问题有着相同的解法。但是并不是所有所有可以分解的子问题都能使用递归来求解。一般来说使用递归求解问题需要满足以下的条件:

  • 可以把要解决的问题转化为一个子问题,而这个子问题的解决方法仍与原来的解决方法相同,只是问题的规模变小了。
  • 原问题可以通过子问题解决而组合解决。
  • 存在一种简单的情境,是问题在简单情境下退出。

例如斐波拉契数列问题,一个数列满足 1,1,2,3,5….. 的形式,即当前项为前两项之和的形式,那么则称这个数列为斐波拉契数列。假设现在要求第 n 项数列的值。
则 f(n) 我们可以通过求的 f(n-1),f(n-2) 所得,原问题可以转化为两个子问题,满足条件一。
假设我们现在得到 f(n-1)、f(n-2)。f(n)=f(n-1)+f(n-2), 满足条件二。
原问题可以通过子问题的解决而解决。而 f(1)=1,f(2)=1, 已知,即存在简单情境使得递归退出,满足条件三。所以此问题解法如下

int fib(n){ 
if(n==1)        
    return 1;   
if(n==2)        
    return 1;   
return fib(n-1)+fib(n-2);}

调用过程
1
通过上面的例子可以总结出递归问题的分析思路

  • 分析问题看是否可以分解成子问题
  • 子问题和原问题之间有何关系
  • 是否有退出的简单条件

在分析问题时我们可以采用自下而上,先分析简单情况,然后看复杂情况是否可以由简单情况组合形成,也可以自上而下,把复杂问题分解成子问题,在此过程中需要注意子问题是否有重叠。

3、经典的递归问题:

  1. 阶乘问题
  2. 汉诺塔问题
  3. 斐波那契数列问题
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yuanmxiang/article/details/52868999
文章标签: 递归 迭代 编程
个人分类: 数据结构 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭