BZOJ 2301: [HAOI2011]Problem b - 莫比乌斯反演

题目描述

经过这道题的洗礼后,现在这个题就是差不多的了。
注意容斥原理,向上向下取整的问题。=_=

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 50000
int mu[MAXN+10],prime[MAXN+10],cntpr,sum[MAXN+10],a,b,c,d,k;
bool isprime[MAXN+10];

void CalMobius(int n)
{
    memset(mu,0,sizeof mu);
    memset(isprime,0,sizeof isprime);
    cntpr=0;
    mu[1]=1;
    for(int i=2;i<=n;i++){
        if(!isprime[i]){
            prime[++cntpr]=i;
            mu[i]=-1;
        }
        for(int j=1;prime[j]*i<=n&&j<=cntpr;j++){
            isprime[prime[j]*i]=true;
            if(i%prime[j]==0){
                mu[prime[j]*i]=0;
                break;
            }
            mu[prime[j]*i]=-mu[i];
        }
    }
    for(int i=1;i<=n;i++)
        sum[i]=mu[i]+sum[i-1];
}
long long Cal(int n,int m)
{
    long long ret=0;
    int side=min(n,m),last;
    for(int i=1;i<=side;i=last+1){
        last=min(n/(n/i),m/(m/i));
        ret+=1LL*(sum[last]-sum[i-1])*(n/i)*(m/i);
    }
    return ret;
}
int main()
{
    int T;
    scanf("%d",&T);
    CalMobius(MAXN);
    while(T--){
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        b/=k,d/=k;
        a=(a-1)/k,c=(c-1)/k;
        long long ans=Cal(b,d)-Cal(a,d)-Cal(c,b)+Cal(a,c);
        printf("%I64d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值