经过这道题的洗礼后,现在这个题就是差不多的了。
注意容斥原理,向上向下取整的问题。=_=
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 50000
int mu[MAXN+10],prime[MAXN+10],cntpr,sum[MAXN+10],a,b,c,d,k;
bool isprime[MAXN+10];
void CalMobius(int n)
{
memset(mu,0,sizeof mu);
memset(isprime,0,sizeof isprime);
cntpr=0;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i]){
prime[++cntpr]=i;
mu[i]=-1;
}
for(int j=1;prime[j]*i<=n&&j<=cntpr;j++){
isprime[prime[j]*i]=true;
if(i%prime[j]==0){
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
}
for(int i=1;i<=n;i++)
sum[i]=mu[i]+sum[i-1];
}
long long Cal(int n,int m)
{
long long ret=0;
int side=min(n,m),last;
for(int i=1;i<=side;i=last+1){
last=min(n/(n/i),m/(m/i));
ret+=1LL*(sum[last]-sum[i-1])*(n/i)*(m/i);
}
return ret;
}
int main()
{
int T;
scanf("%d",&T);
CalMobius(MAXN);
while(T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
b/=k,d/=k;
a=(a-1)/k,c=(c-1)/k;
long long ans=Cal(b,d)-Cal(a,d)-Cal(c,b)+Cal(a,c);
printf("%I64d\n",ans);
}
}