定积分的元素法(1)

7 篇文章 1 订阅
3 篇文章 0 订阅

定积分的元素法

定积分定义
如图,我们把一块曲边梯形的面积分成很多小块,在 [ x , x + d x ] [x,x+dx] [x,x+dx]区间内这一块面积可以近似地认为是 f ( x ) d x f(x)dx f(x)dx.我们设 Δ U i = f ( x i ) d x \Delta U_i=f(x_i)dx ΔUi=f(xi)dx.
这样,在 [ a , b ] [a,b] [a,b]区间内的曲边梯形的面积就是 ∫ a b f ( x ) = ∑ Δ U i = ∑ f ( x ) d x \Huge\int^b_af(x)=\sum\Delta U_i=\sum{f(x)}dx abf(x)=ΔUi=f(x)dx
所以,我们只需要把要求的面积表示成函数,在积分就能求出。
这就是定积分的元素法

在几何计算中的应用

平面图形的面积

平面直角坐标系

【例1】

例1
两函数分别为 y = x 2 , y = x y=x^2,y=\sqrt{x} y=x2,y=x ,求围成的图形的面积。

显然两交点在 x = 0 , x = 1 x=0,x=1 x=0,x=1处。
[ x , x + d x ] [x,x+dx] [x,x+dx],每一小块的面积为 ( x − x 2 ) d x (\sqrt{x}-x^2)dx (x x2)dx
积分: ∫ 0 1 ( x − x 2 ) d x = 1 3 \int^1_0{(\sqrt{x}-x^2)dx}=\frac{1}{3} 01(x x2)dx=31

【例2】

在这里插入图片描述
两函数分别为 y = x ( x − 1 ) 2 , y = x y=x(x-1)^2,y=x y=x(x1)2,y=x,求围成的图形的面积。

解方程 x ( x − 1 ) 2 = x x(x-1)^2=x x(x1)2=x x 1 = 0 , x 2 = 2 x_1=0,x_2=2 x1=0,x2=2所以两交点在 x = 0 , x = 2 x=0,x=2 x=0,x=2
[ x , x + d x ] [x,x+dx] [x,x+dx],每一小块的面积为 ( x − x ( x − 1 ) 2 ) d x (x-x(x-1)^2)dx (xx(x1)2)dx
积分:
∫ 0 2 ( x − x ( x − 1 ) 2 ) d x = 4 3 \int^2_0{(x-x(x-1)^2)dx}=\frac{4}{3} 02(xx(x1)2)dx=34

有时候,我们需要对 y y y积分,比如

【例3】

在这里插入图片描述

两函数分别为 y 2 = 2 x , y = x − 4 y^2=2x,y=x-4 y2=2x,y=x4,求围成的图形的面积。
分析
这时候,如果对 x x x积,我们会发现 y = ± 2 x y=±\sqrt{2x} y=±2x 不方便计算,这时候我们对 y y y积分

解方程组
{ y 2 = 2 x y = x − 4 \begin{cases} y^2=2x\\ y=x-4 \end{cases} {y2=2xy=x4

{ x = 2 y = − 2 { x = 8 y = 4 \begin{cases} x=2\\ y=-2 \end{cases}\begin{cases} x=8\\ y=4 \end{cases} {x=2y=2{x=8y=4
y y y为积分变量:
对于[y,y+dy],每一块小面积为 ( y + 4 − 1 2 y 2 ) d y (y+4-\frac{1}{2}y^{2})dy (y+421y2)dy
积分,得
∫ − 2 4 ( y + 4 − 1 2 y 2 ) d y = 18 \int^{4}_{-2}(y+4-\frac{1}{2}y^{2})dy=18 24(y+421y2)dy=18

极坐标系

某些平面图形,可以用极坐标来计算,这样会比较方便。
在这里插入图片描述如图,设曲线 ρ = ρ ( θ ) ρ=ρ(\theta) ρ=ρ(θ)与射线 θ = α , θ = β \theta=\alpha,\theta=\beta θ=α,θ=β围成一图形。同理,只要表示出每一小块的扇形 [ θ , d θ ] [\theta,d\theta] [θ,dθ]的面积,再积分即可。
扇形的面积为:
S = 1 2 r 2 θ S=\frac{1}{2}r^2\theta S=21r2θ
所以,极坐标下图形的面积为:
∫ α β 1 2 [ ρ ( θ ) ] 2 d θ \Huge{\int^{\beta}_{\alpha}{\frac{1}{2}\left[ρ(\theta)\right]}^2d\theta} αβ21[ρ(θ)]2dθ
这是一个极其重要的结论

下面几道例题留作练习,我就不讲了(或者下期在讲)

【例1】

例1
求如图所示的面积,曲线: r = a θ ( θ ∈ [ 0 , 2 π ] ) r=a\theta(\theta∈[0,2\pi]) r=aθ(θ[0,2π])

【例2】

例2
求图中曲线围成的面积: r = a ( 1 + cos ⁡   θ ) r=a\left(1+\cos\ \theta\right) r=a(1+cos θ)

下期预告:利用定积分计算体积与曲线的弧长

附:本文章所有图表,点击右下方desmos字样即可进入编辑

  • 24
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值