计算机概论计算篇
文章目录
进制运算的基础
进制概述
- 进位制是一种记数方式,亦称进位计数法或位值计数法
- 有限种数字符号来表示无限的数值
- 使用的数字符号的数目称为这种进位制的基数或底数
- 计算机喜欢二进制,但是二进制表达太长了,使用大进制位可以解决这个问题,八进制、十六进制满足2的n次方的要求
二进制运算的基础
二进制转换十进制:按权展开法
- 整数
- 小数
十进制转换二进制
- 重复相除法
- 重复相乘法(小数)
有符号数与无符号数
原码表示法
- 使用0表示正数、1表示负数
- 规定符号位位于数值第一位
- 表达简单明了,是人类最容易理解的表示法
二进制的补码表示法
希望找到使用正数代替负数的方法使用加法操作代替减法操作,
从而消除减法
二进制的反码表示法
在计算补码的过程中,还是使用了减法!!
反码的目的是找出原码和补码之间的规律,消除转换过程中的减法
- 计算定义
- 二进制的反码表示法
- 小数的补码
定点数与浮点数
定点数的表示方法
浮点数的表示方法
计算机处理的很大程度上不是纯小数或纯整数
数据范围很大,定点数难以表达
科学计数法
浮点数的表示格式
浮点数的表示范围
单精度浮点数:使用4字节、32位来表达浮点数(float)
双精度浮点数:使用8字节、64位来表达浮点数(double)
- 阶码
- 尾数
浮点数的规格化
尾数规定使用纯小数
尾数最高位必须是1
定点数与浮点数的对比
- 当定点数与浮点数位数相同时,浮点数表示的范围更大
- 当浮点数尾数为规格化数时,浮点数的精度更高
- 浮点数运算包含阶码和尾数,浮点数的运算更为复杂
- 浮点数在数的表示范围、精度、溢出处理、编程等方面均优于定点数
- 浮点数在数的运算规则、运算速度、硬件成本方面不如定点数
定点数的加减法运算
数值位与符号位一同运算,并将符号位产生的进位自然丢掉.
加法
判断溢出
- 双符号位判断法