全文结构:
- 为什么需要ALM?
- 上一代ALM缺什么?
- AI时代,ALM需要再造
为什么需要ALM?
ALM(Application Lifycycle Management)作为汽车行业的一个“古老”概念,其起源可追溯至20 世纪 80-90 年代,但作为一个正式的术语和完整的管理理念,是在 2003-2004 年间逐渐形成和普及的。IBM、微软、惠普,是最早系统性地推广 ALM 概念的主要公司之一。
目前为国内用户所熟知的ALM,一般都指代IBM doors、西门子Polarion、以及PTC Codebeamer。这三款软件分别诞生于1991年、2005年、2002年。
软件名 | 诞生年代 | 被收购 |
Doors | 1991年,Telelogic公司开发 | 2008年被IBM收购 |
Polarion | 2005年,Polarion公司开发 | 2016年被西门子收购 |
Codebeamer | 2002年,Intland公司开发 | 2022年被PTC收购 |
这3款软件诞生的年代,国内合资车企势头正盛,合资车企和供应商的技术,主要以跟随为主。因此,2015年以前,国内车企或供应商使用的ALM软件,大多以Doors和Polarion为主(彼时,Codebeamer尚未进入德国大众体系,产品开发自顾不暇,无力开拓国内市场)。
进入2018-2020年,国内新势力势头正盛,市值如日中天,“电动汽车弯道超车”如火如荼,大批车圈有志青年投入到正向研发的新势力车企之中。
但新势力造车与大洋彼岸的特斯拉一样,不拘一格降人才,于是车圈异常热闹,阿里系、百度系、腾讯系的互联网精英,与传统的车辆工程、机械工程、电子电器工程的人才一起,携手加入造车行列。互联网人造车不久,便引发了敏捷开发与ASPICE的大融合讨论。17年-21年,笔者在蔚来汽车与上汽零束,亲历了这波“敏捷开发与ASPICE研发理念融合”的广泛交锋与落地实践。详情请见笔者的另一篇文章:ASPICE 还值得做吗?
正是车企对于新造车热潮下全新ALM的热切需求,笔者于21年开始创业,主推国产自研、“双A加持”(Agile + ASPICE)的ALM软件。
上一代ALM缺什么?
上一代ALM诞生的时间点(1991-2005年),正是汽车行业经典开发方法论V模型大行其道的时期。2005年,德国的十几家主机厂(大众、宝马、戴姆勒等)和比较强势的供应商(博世等)一起制定了一个汽车软件流程的评价框架,后来他们背靠VDA(德国汽车工业协会)发布了这套框架,也就是今天的ASPICE。这套框架的核心便是严谨的V模型流程。而V模型流程不仅适用于汽车,同样适用于飞机、轨道交通列车、医疗器械等安全性要求极高的嵌入式软件开发行业(IEC-61508).
可想而知,在那样的时代背景下,上一代ALM诞生的核心目的,便是帮助车企和供应商满足复杂的ASPICE标准流程。加之彼时整车开发的周期相对较长(3-5年),车载软件的迭代速度不像今天智能汽车这样,每天都能给你整几个花活儿,因此这一套ALM工具的设计理念,更多是以“建立满足标准合规的证据链”为首要目标,辅以研发协作为次要目标。可想而知,协作并不顺畅。基于SVN的数据存储方式,更是让让高并发下的数据吞吐效率捉襟见肘。
总结来讲,上一代ALM:
- 合规优先:为满足ASPICE认证,牺牲30%的协作效率
- 人肉驱动:工程师40%时间消耗在文档追溯而非技术创新
AI时代,ALM需要再造
2022年11月,ChatGPT横空出世,自此之后,每周甚至每天,都有新的AI应用出现,观众目不暇接。
当GitHub Copilot能根据注释自动生成代码片段,当Postman推出AI驱动的智能测试编排,当Jira新增自然语言转用户故事功能时,AI重构ALM的路径已清晰可见。在汽车行业,这种变革将分两个阶段展开:
1-2年内,AI将成为研发流程的"超级助手"
工程师输入"基于MappingSpace中已经存在的BMS研发数据,创建一个全新项目,包含符合ASPICE标准的BMS研发过程文档",ALM系统即刻生成带有完整追溯矩阵的BMS研发数据;测试负责人说"生成基于A项目下智能泊车需求的功能测试用例",AI基于企业内部已有智能泊车需求,自动生成测试用例。这如同给传统ALM装上智能语音助手,将手动点击操作转化为自然语言交互。
3-5年间,AI进化为跨系统调度员
当产品经理提出"在蔚来NT3.0平台实现自动泊车功能迭代",ALM能自动拆解任务:调用MappingSpace生成需求基线,联动MATLAB搭建算法模型,调度Jenkins执行持续集成。此时系统已具备任务拆解能力,就像特斯拉工厂的智能调度系统,将人工协调转为API自动调用,但关键决策仍需人类确认。
这正是MappingSpace未来5年的进化路线:
这场变革的本质,是将ALM从"流程记录仪"升级为"智能加速器"。
当AI自动完成70%的文档编写
自动完成50%的测试执行
自动完成90%的追溯验证
工程师便能将精力聚焦于架构创新与场景定义。
正如AutoSAR解耦了软硬件开发,AI赋能的ALM将解绑流程合规与工程创新。
这或许才是“三A加持”(AI + Agile + ASPICE)的终极答案:
在智能体的支撑下,敏捷迭代与车规认证不再是需要权衡的单选题,而是智能研发生态的共生双翼。
【MappingSpace研发管理平台全功能永久免费版】
经过3年多的不断发展,“MappingSpace研发管理平台”获得了众多汽车产业科技研发企业的好评和深度使用。云体科技将于2025年1月1日起,正式推出“MappingSpace研发管理平台全功能永久免费版”,以支持广大制造业科技研发型企业降本增效,实现国产化自主替代。满足如下条件的企业均可在线申请(满足任意一条即可)。
- 企业所属行业:汽车制造(含上游企业),芯片/半导体,电子通讯,医疗设备,机器人(消费级除外),无人机;
- 上榜“被美国出口管制”名单的企业,急需替代Polarion, CodeBeamer,IBM doors等国外产品;
合作/产品咨询邮箱丨business@ytdevops.com
申请免费权益丨https://www.ytdevops.com/