圆桌座位(dfs)

文章讨论了一个问题,给定N个人和M对朋友关系,要求安排座位使相邻的人不是朋友,使用深度优先搜索(DFS)方法求解总的非朋友邻座方案数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

N个人围坐—圈,有M对朋友关系。
第i对朋友关系是指,编号是ai的人和编号是bi的人是朋友。
现在要给他们安排座位,要求所有相邻的人不能是朋友。
问共有多少种方案?
如果两个方案只有旋转角度不同,则我们将其视为─种方案。

输入格式:

第一行包含两个整数N, M。
接下来M行,每行包含一对ai , bi。

输出格式:

输出—个数,表示总方案数。

 输入样例1:
4 1
1 2
输出样例1:2
输入样例2:
10 5
1 2
3 4
5 6
7 8
9 10
输出样例2:112512

解题思路:

使用dfs,首先思考结束递归的情况,当n个人搜索完毕要判断方案成不成立,需要判断最后安排的与第一安排的是否为朋友关系,如果不是朋友关系,此方案成立 

普遍情况,枚举每一种可能从1到n个人进行排座位,判断条件为没排座且和上一人不是朋友,就将该人填入位置 

package dfs;

import java.util.Scanner;

public class 圆桌座位 {
	static int n, m;//个人 m对关系
	static boolean[] st; //是否已经安排了座位 状态数组
	static int[][] friend;//是否为朋友 1为朋友 0不是
	static int[] a;//座位上安排的人

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		n = sc.nextInt();
		m = sc.nextInt();
		friend = new int[n + 1][n + 1];
		st = new boolean[n + 1];
		a = new int[n + 1];
		for (int i = 0; i < m; i++) {
			int a = sc.nextInt();
			int b = sc.nextInt();
			friend[a][b] = 1;
			friend[b][a] = 1;// a和b是朋友关系
		}
		a[0] = 1;
		st[1] = true;//定义开始
		System.out.println(dfs(1));
	}

	public static int dfs(int step) {
		if (step == n) {//出口  n个人搜索安排完毕
			if (friend[a[step - 1]][a[0]] != 1) {// 检查最后一人与第一人的关系
				return 1;
			} else {
				return 0;
			}
		}
		int res = 0;
		for (int j = 1; j <= n; j++) {// n个人进行排座位
			if (!st[j] && friend[j][a[step - 1]] != 1) {// 当前人未排座位并且安排的人与上一人不是朋友
				// 进行安排
				a[step] = j;
				st[j] = true;
				res += dfs(step + 1);// 累加方案
				st[j] = false;// 回溯
			}
		}
		return res;
	}
}
 运行结果:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值