目录
斐波那契数列的概念
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列指的是这样一个数列:
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711……
它的规律是:这个数列从第 3 项开始,每一项都等于前两项之和。
在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*),显然,斐波那契数列是一个线性递推数列。
斐波那契数列的实现
常用的实现斐波那契数列的方法分为两大类:递归和循环。
1. 递归实现
int fib(int n)
{
if (n < 2)
return 1;
else
return fib(n - 1) + fib(n - 2);
}
#include<stdio.h>
int main()
{
int n;
scanf("%d", &n);
int ret = fib(n);
printf("%d", ret);
return 0;
}
缺点:递归容易发生栈溢出,并且运行时间较长。
2.迭代实现
int fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while (n > 2)
{
c = a + b;//假设n=3
a = b;
b = c;
n--;
}
return c;
}
#include<stdio.h>
int main()
{
int n;
scanf("%d", &n);
int ret = fib(n);
printf("%d", ret);
return 0;
}