算法模型
文章平均质量分 95
菠萝y
发上等愿,结中等缘,享下等福;择高处立,寻平处住,向宽处行。
展开
-
神经网络浅讲:从神经元到深度学习【最易懂最清晰的一篇文章】
让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。在开始介绍前,有一些知识可以先记在心里:1.设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定;2.神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;转载 2024-07-15 17:50:10 · 78 阅读 · 0 评论 -
神经网络入门
眼下最热门的技术,绝对是人工智能。人工智能的底层模型是"许多复杂的应用(比如模式识别、自动控制)和高级模型(比如深度学习)都基于它。学习人工智能,一定是从它开始。什么是神经网络呢?网上似乎缺乏通俗的解释。前两天,我读到 Michael Nielsen 的开源教材(Neural Networks and Deep Learning),意外发现里面的解释非常好懂。下面,我就按照这本书,介绍什么是神经网络。转载 2024-07-10 20:55:52 · 78 阅读 · 0 评论 -
Transformer模型详解
Attention Is All You Need是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的 CNN 和 RNN ,目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。转载 2024-07-10 11:18:30 · 79 阅读 · 0 评论