OpenJPOJ1013_Excellent Note_Dinic算法求二分图匹配

题意

求给出正则二分图的最大匹配。

思路

匈牙利算法果断TLE,用dinic算法求解二分图匹配。

算法过程

1.读入正则二分图,dfs黑白染色
2.在染色图上建立跑dinic的图。s到白点,白点到黑点,黑点到t,权值都是1。这里存图有一定技巧,在方便地找反向边地同时,还能保证原边的位号都是偶数,方便最后输出结果。
3.dinic算法,输出结果。

链接

https://vjudge.net/contest/179392#problem/D

代码

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>

using namespace std;

const int maxn = 1e5 + 10;
const int maxm = 1e6 + 10;
const int maxe = maxn * 2 + maxm;
const int inf  = 0x3f3f3f3f;

struct edge{
    int to, cap, next;
};

int n, m;
int x, y;

vector<int> G[maxn];
int mark[maxn];

int head[maxn], tt;
edge E[maxe];
int level[maxn], iter[maxn];

void dfs0(int v, int c)
{
    mark[v] = c;
    for(int i = 0; i < G[v].size(); i++)
    {
        int d = G[v][i];
        if(mark[d] < 0)
        {
            dfs0(d, c ^ 1);
        }
    }
}

void get_color()
{
    memset(mark, -1, sizeof mark);
    for(int i = 1; i <= n; i++)
    {
        if(mark[i] >= 0) continue;
        dfs0(i, 0);
    }
}

void add(int from, int to, int cap)
{
    E[tt].to = to, E[tt].cap = cap, E[tt].next = head[from], head[from] = tt, tt++;
}

void build_g(int s, int t)
{
    tt = 0;
    memset(head, -1, sizeof head);
    for(int i = 1; i <= n; i++)
    {
        if(mark[i] == 0)
        {
            add(s, i, 1);
            add(i, s, 0);

            for(int j = 0; j < G[i].size(); j++)
            {
                int d = G[i][j];
                add(i, d, 1);
                add(d, i, 0);
            }
        }
        else{
            add(i, t, 1);
            add(t, i, 0);
        }
    }
}

void bfs(int s)
{
    memset(level, -1, sizeof level);
    queue<int> qu;

    level[s] = 0;
    qu.push(s);

    while(qu.size())
    {
        int v = qu.front();
        qu.pop();

        for(int i = head[v]; i != -1; i = E[i].next)
        {
            edge e = E[i];
            if(e.cap > 0 && level[e.to] < 0)
            {
                level[e.to] = level[v] + 1;
                qu.push(e.to);
            }
        }
    }
}

int dfs(int v, int t, int f)
{
    if(v == t) return f;
    for(int &i = iter[v]; i != -1; i = E[i].next)
    {
        edge &e = E[i];
        if(e.cap > 0 && level[e.to] > level[v])
        {
            int d = dfs(e.to, t, min(f, e.cap));
            if(d > 0)
            {
                e.cap -= d;
                E[i^1].cap += d;
                return d;
            }
        }
    }

    return 0;
}

int dinic(int s, int t)
{
    int flow = 0;
    while(1)
    {
        bfs(s);
        if(level[t] < 0) return flow;

        for(int i = s; i <= t; i++) iter[i] = head[i];
        while(1)
        {
            int f = dfs(s, t, inf);
            if(f == 0) break;
            flow += f;
        }
    }
}

void output()
{
    for(int i = 0; i < tt; i += 2)
    {
        if(E[i].cap == 0)
        {
            if(E[i].to == 0 || E[i].to == n+1) continue;
            if(E[i^1].to == 0 || E[i^1].to == n+1) continue;
            cout << E[i].to << " " << E[i^1].to << endl;
        }
    }
}

int main()
{
    scanf("%d %d", &n, &m);

    for(int i = 0; i < m; i++)
    {
        scanf("%d %d", &x, &y);
        G[x].push_back(y);
        G[y].push_back(x);
    }

    get_color();

    int s = 0, t = n + 1;
    build_g(s, t);

    dinic(s, t);

    output();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值