二分图匹配的一点说明

       看了看网上的博客,没几篇讲得好的,介于我自己也无法描述清楚,就凑合看看吧。

      (以下源自百度百科)

       二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。

       简而言之,就是顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属于这两个互不相交的子集,两个子集内的顶点不相邻。

       无向图G为二分图的充分必要条件是,G至少有两个顶点,且其所有回路的长度均为偶数。

       设是一个无向图。如顶点集V可分割为两个互不相交的子集,选择这样的子集中边数最大的子集称为图的最大匹配问题(maximal matching problem)。

       如果一个匹配中,且匹配数,则称此匹配为完全匹配,也称作完备匹配。特别的当称为完美匹配。

       在介绍匈牙利算法之前还是先提一下几个概念,下面M是G的一个匹配。

       若,其中边已经在匹配M上。

       M-交错路:p是G的一条通路,如果p中的边为属于M中的边与不属于M但属于G中的边交替出现,则称p是一条M-交错路。如:路径 ,

       M-饱和点:对于,如果v与M中的某条边关联,则称v是M-饱和点,否则称v是非M-饱和点。如都属于M-饱和点,而其它点都属于非M-饱和点。

       M-可增广路:p是一条M-交错路,如果p的起点和终点都是非M-饱和点,则称p为M-可增广路。如(不要和流网络中的增广路径弄混了)。

       求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的时间复杂度为边数的指数级函数。因此,需要寻求一种更加高效的算法。下面介绍用增广路求最大匹配的方法(称作匈牙利算法,匈牙利数学家Edmonds于1965年提出)。

       增广路的定义(也称增广轨或交错轨):

       若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。

       由增广路的定义可以推出下述三个结论:

       (1)P的路径个数必定为奇数,第一条边和最后一条边都不属于M。

       (2)将M和P进行取反操作可以得到一个更大的匹配

       (3)M为G的最大匹配当且仅当不存在M的增广路径。

       算法轮廓:

       (1)置M为空

       (2)找出一条增广路径P,通过异或操作获得更大的匹配代替M

       (3)重复(2)操作直到找不出增广路径为止

       如果不懂可以看这篇博客

       我还是比较适合讲题目,那么看看HDU2063。裸的匈牙利算法模板题。

Code:

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#define N 1005
using namespace std;
int flag[N][N],girl[N],used[N],n,k,m;
bool found(int x)
{
	for(int i=1;i<=n;i++)
		if(flag[x][i]&&!used[i])
		{
			used[i]=1;
			if(girl[i]==0||found(girl[i]))
			{
				girl[i]=x;
				return 1;
			}
		}
	return 0;
}
int main()
{
	scanf("%d",&k);
	while(k)
	{
		scanf("%d%d",&m,&n);
		memset(flag,false,sizeof(flag));
		memset(girl,0,sizeof(girl));
		for(int i=1;i<=k;i++)
		{
			int x,y;
			scanf("%d%d",&x,&y);
			if(x>m||y>n)continue;
			flag[x][y]=true;
		}
		int ans=0;
		for(int i=1;i<=m;i++)
		{
			memset(used,0,sizeof(used));
			if(found(i))ans++;
		}
		printf("%d\n",ans);
		scanf("%d",&k);
	}
}

       下面讲一下二分图匹配的相关定理(不会证明,我的证明都是借鉴各位大神的)。

       1、二分图中最小顶点覆盖等于最大匹配数

       最小顶点覆盖:实质是个点集,点集里面的点能覆盖所有的边,最小顶点覆盖就是满足这个要求的点集中点数最小的那个。

       证明:首先,最小顶点覆盖一定>=最大匹配,因为假设最大匹配为n,那么我们就得到了n条互不相邻的边,光覆盖这些边就要用到n个点。这里事实上就可以看出最小顶点覆盖和最大匹配的不同了,最大匹配的点一定是两两成对的,而最小顶点覆盖还有相对孤立的点。注意是相对孤立,并不是他们之间肯定没有边,而是不属于匹配范围内的。那么匹配范围外的节点,一种就是有边和匹配范围内元素相连但是没有匹配到,一种就是没边。

       有边的话这个边就连在了匹配范围内,那这个顶点覆盖代表元素就是既可以连接上匹配元素,又可以连接到非匹配元素,相当于这个非匹配范围内的元素被这个“特殊顶点”覆盖,最小顶点覆盖数并没有增加;

       那么完全没边的孤立节点呢?好嘞,最小点集覆盖目的就是要覆盖所有的边,既然这个节点没有边相连,那还要你干毛?滚吧。这样依然没有影响最小顶点覆盖数。

       至此,匹配范围外的所有节点都不可能影响到最小顶点覆盖数,所以两者完全相等。

       2、二分图中最小边覆盖=顶点数-最小顶点覆盖(最大匹配)

最小边覆盖:实质是个边集,这个集合里的边能覆盖所有的点,最小边覆盖是满足这个要求的所有边集中边数最少的一个。

       这里顶点数等于总的顶点数,是二分图两边的顶点数,不是一边。

       证明:设最大匹配数为m,总顶点数为n。为了使边数最少,又因为一条边最多能干掉两个点,所以尽量用边干掉两个点。也就是取有匹配的那些边,当然这些边是越多越好,那就是最大匹配了,所以先用最大匹配数目的边干掉大多数点。剩下的解决没有被匹配的点,就只能一条边干掉一个点了,设这些数目为a,显然,2m+a=n,而最小边覆盖=m+a,所以最小边覆盖=(2m+a)-m=n-m。

       3、二分图中最大独立集+最小顶点覆盖(最大匹配)=顶点数

       最大独立集:实质是个点集,这个集合里的点无论怎样都两两相连不到一起,满足这个要求的点数最少的一个。

       证明:这个最好理解了,既然最小顶点覆盖就是最大匹配的那些顶点,那么剩下的节点就是相对孤立的点。而这些相对孤立的点两两肯定没有边(若有边,匹配数就该加一了,也就是这两点是匹配点),不就是最大独立集吗?那这样所有的点就都考虑到了,两者一加就变成了所有顶点数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JackflyDC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值