yolo学习1:怎么用labelimg创建自己的yolo数据集

yolo v5训练自己的数据集

最近看了好多图像识别之目标检测的博文,并且尝试性的用yolo v5训练了一把OID数据集。OID是Open image dataset,是一个开放的数据集。我从github上利用 OID v4下载了两个类别的图片共计2000张左右,苹果和橘子,apple和orange,两个类别,训练了3个epoch就能预测,当然预测的准确率很低。
之前从网上下载了一个labelimg工具,当时没有深入研究怎么使用,这次趁着这个机会,找了一些图片,用yolo v5 训练一下自己的数据集。

制作自己的数据集

第一步:准备工作,下载labelimg工具

链接: link.
万里长征第一步,工欲善其事必先利其器,labelimg是一个图片标记工具,给图片加上框框,并且添加标签。
在这里插入图片描述
在这里插入图片描述

比如上面这2张图片。这两张图片是标记完以后的数据集。

下载labelimg工具

网上找到过一个labelimg软件,是打包成exe格式的,可以打开用,但是标签信息只能保存成xml格式的文件,我用yolo v5 实现的时候用的格式是txt。百度了一下,说labelimg可以直接保存txt的供yolo v5算法使用的数据集格式。
下面这张截图就是PyPi上面的labelimg的最新版本,可以编译运行。
在这里插入图片描述
我也是新手,这个东西下载下来后怎么使用呢,我尝试的用pycharm编译一下使用,没有成功,改天再试一下。
就直接从windows的控制台运行这个代码吧:
第一步:下载下来的这个工具解压
我截图看一下,我是解压到我的一个移动硬盘,
在这里插入图片描述打开这个文件夹可以看到:
在这里插入图片描述里面有这些东西,这个就是我们要用的labelimg工具了,这个具体怎么用呢?
其实下载页面里面有介绍,只是都是英文的,看到英文就头大,其实不用头大,这里的介绍很简单。
在这里插入图片描述我也翻译一下,labelimg是一个图片注释工具
这个工具使用python编写,用qt做的界面
注释被保存成voc格式的xml文件,也可以保存成yolo和ml格式的

windows下怎么使用下载好的labelimg

首先打开cmd
按下win+r
在这里插入图片描述输入cmd,按回车。
我这里解压到了我的移动硬盘,盘符为F盘
在这里插入图片描述接着打开文件夹labelImg-1.8.5, (这里windows用的命令是cd)
在这里插入图片描述
最后就可以运行程序了
输入python labelImg.py按下回车键按下回车键,就会弹出下面的这个windows界面
这个就是labelimg的软件界面了这里是成功的打开的了软件,这个软件工具依赖于pyqt5和lxml这两个包,打开的时候如果失败了,注意看一下提示的原因,是不是这两个依赖包没有安装,如果没有安装就用pip安装一下。

总结

到这里准备工作1算是做完了,梳理一下
1.下载labelimg,可以从github也可以从pypi上面下载
2.解压labelimg,在cmd上面运行程序,弹出软件界面
上面的两步对于新手朋友来说也是很难的,其实,下载下来的就是labelimg的源码,只是没有打包成exe文件,需要在python里面编译使用。

关于工具labelImg标签工具的参数

用labelImg这个工具标记标签的时候,会默认的有10个标签,比如dog person 等等,怎么把这些删除呢,毕竟我们用不到,比如我们用到两个标签,一个男人,一个女人吧,man woman,怎么让软件默认这两个类别class,截图说明如下:
在这里插入图片描述在labelImg-1.8.5这个文件夹内有data文件夹,打开
在这里插入图片描述这里的predefined是预定义的意思,预定义类别,打开后输入我们自己想定义的类别就可以。
在这里插入图片描述
比如我定义了poppy_flower 和poppy这两个类别,我们打开labelImg工具看一下:

在这里插入图片描述这里就会有这两个类别

第二步:准备图片,标签图片

第一步完成以后再做这一步就简单了,比如我想做一个罂粟花的数据集,就从百度上找了57张罂粟花的图片,我是先保存了57张图片,如下图
在这里插入图片描述这57张图片用labelImg给标记标签,并保存成yolo格式的txt文件
打开一个txt文件看一下
在这里插入图片描述这是图片poppy_00.jpg这张图片的标记文件,这张图片里面有两个标签,其中0代poppy_flower,1表示poppy,接着的两个是bbox框的中心位置,后面两位是长宽,共四个坐标信息。
标记完以后就可以训练了,但是在训练之前要把这些图片的分类放到固定格式的文件夹中。

第三步:创建yolo v5的文件夹格式

在这里插入图片描述标签做完以后是上面这张图这样的,有57张图片,对应这个57个txt文件。
在这里插入图片描述
我用的是pycharm创建的项目,项目文件夹是pcharm_yolo-poppy,在项目文件夹下面创建一个文件夹,这个文件夹下面创建一个data,data文件夹下面创建两个文件夹images和labels文件夹,
在这里插入图片描述
分别在images和labels文件夹下面创建两个文件夹,一个是train,一个是valid

在这里插入图片描述对应着images-train里面放图片57张,labels-train里面放标签
对于images-valid里面放几张验证数据集图片,同样labels-valid里面放标签,用来验证模型

到这里yolo数据集基本上全部建完了,下一步就是怎么用yolo训练自己的数据集,并且能输出结果

YOLO(You Only Look Once)是一种目标检测算法,它能够实时地在图像或视频中检测出多个物体的位置和类别。自己训练YOLO模型需要准备自定义的数据集,并按照一定的格式进行标注和处理。下面是使用YOLO自己训练数据集的步骤: 1. 数据集准备:首先,你需要收集一组包含你感兴趣物体的图像,并将它们分成训练集和验证集。确保图像中的物体有明确的边界框,并且每个边界框都有对应的类别标签。 2. 标注数据:使用标注工具(如LabelImg)对图像进行标注,为每个物体添加边界框和类别标签。标注完成后,将标注信息保存为YOLO格式的标签文件,每个图像对应一个标签文件。 3. 配置文件:创建一个YOLO的配置文件,其中包含模型的参数设置、数据集的路径、类别数量等信息。配置文件通常包括三个部分:模型设置、训练设置和数据设置。 4. 数据预处理:在训练之前,需要对数据进行预处理。常见的预处理操作包括图像大小调整、数据增强(如随机裁剪、旋转、翻转等)和归一化。 5. 训练模型:使用YOLO的训练脚本开始训练模型。在训练过程中,模型会根据标注信息进行学习和优化,以提高检测的准确性。 6. 模型评估:训练完成后,使用验证集对模型进行评估,计算模型的精度、召回率等指标,以了解模型的性能。 7. 模型应用:训练完成的模型可以用于目标检测任务。将模型加载到YOLO框架中,输入一张图像或视频,即可实时地检测出图像中的物体位置和类别。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuejich

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值