检索与主题发现
文章平均质量分 81
yueliangku
这个作者很懒,什么都没留下…
展开
-
主题模型LDA及其在微博推荐&广告算法中的应用--第1期
因为原文偶尔会出现访问不了的情况,所以特拷贝于此。原文链接:http://www.wbrecom.com/?p=136 @吴宇WB 【前言】转载 2014-12-18 09:10:40 · 4779 阅读 · 0 评论 -
建议的程序员学习LDA算法的步骤
原文链接:http://blog.csdn.net/zhoubl668/article/details/8959467一开始直接就下了Blei的原始的那篇论文来看,但是看了个开头就被Dirichlet分布和几个数学公式打倒,然后因为专心在写项目中的具体的代码,也就先放下了。但是因为发现完全忘记了本科学的概率和统计的内容,只好回头去转载 2014-12-26 08:43:59 · 1610 阅读 · 0 评论 -
lda代码的一些资料
原文链接:点击打开链接首先,我以前总结过,关于北邮一个人写的导读,连接在这里。肯定得看Blei 2003年的论文,点击下载。然后很重要的Blei的视频和一个80多页的Lecture。Topic ModelsLatent Dirichlet Allocation(LDA) [pdf]模型是近年来提出的一种具有转载 2014-12-26 08:40:18 · 622 阅读 · 0 评论 -
LDA
原文链接:http://yinwenpeng1987.blog.163.com/blog/static/162471582201121210828165/____http://sy95122.blog.163.com/blog/static/3601615920101024111530459/ 关键所在:it posits that ea转载 2014-12-10 08:47:28 · 521 阅读 · 0 评论 -
LDA相关论文汇总
原文链接:http://blog.csdn.net/pirage/article/details/9467547LDA理论David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Re转载 2014-12-10 08:45:08 · 3120 阅读 · 0 评论 -
通俗理解LDA主题模型
原文链接:通俗理解LDA主题模型还是尽量查看原文吧目录(?)[-]通俗理解LDA主题模型前言gamma函数整体把握LDAgamma函数beta分布beta分布Beta-Binomial 共轭共轭先验分布从beta分布推广到Dirichlet 分布Dir转载 2014-12-08 16:51:37 · 995 阅读 · 1 评论 -
SVD Python代码注释
原英文链接:Latent Semantic Analysis (LSA) Tutorial - Part 1 - Creating the Count MatrixLSA的第一步是建立标题(或文档)词矩阵。在该矩阵中,每个索引词是一行,每个标题是一列。矩阵中的每个值表示该词在该标题中的出现次数。比如在下图中,单词“book”在T3和T4中各出现1次,而单词“investing”在每个标翻译 2014-12-04 16:36:38 · 3682 阅读 · 1 评论 -
Singular Value Decomposition(SVD) Tutorial
源英文链接 Singular Value Decomposition (SVD) TutorialPage1当你浏览诸如 Singular Value Decomposition (SVD) on Wikipedia之类的网络资源时,你会发现很多等式,但是对于什么是SVD和它是如何工作的并没有一个直观的解释。SVD是将矩阵分解为一系列线性近似,以挖掘该矩阵隐藏结构的一种算法。SVD翻译 2014-12-05 08:49:23 · 1661 阅读 · 0 评论 -
KDD 2014 “A Dirichlet Multinomial Mixture Model-based Approach for Short Text Clustering” 的主要思想
这几天在做短文本主题发现时,考虑使用聚类算法不同一主题的文本聚集到一块,因此读了这篇论文:A Dirichlet Multinomial Mixture Model-based Approach for Short Text Clustering在该文中,作者使用“a collapsed Gibbs Sampling algorithm for the Dirichlet Multinom原创 2015-01-15 10:39:20 · 3221 阅读 · 0 评论 -
Latent semantic analysis note(LSA)
原文链接:原文1 LSA IntroductionLSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwester, Susan T. Dumais等人在1990年提出来的一种新的索引和检索方法。该方法和传统向量空间模型(vector space model)一样转载 2014-12-04 09:27:28 · 480 阅读 · 0 评论 -
微博推荐引擎体系结构简述
原文链接:http://www.wbrecom.com/?p=48这里有个“道术孰优”的问题,何为“道”?何为“术”?举个例子的话,《孙子兵法》是道,而《三十六计》则为术。“道”所述,是宏观的、原理性的、长久不变的基本原理,而“术”则是在遵循基本原理基础上的具体手段和措施,具有易变性。技术也是如此,算法本省的细节是“术”,算法转载 2014-12-18 09:16:06 · 566 阅读 · 0 评论 -
微博推荐算法简述
原文链接:http://www.wbrecom.com/?p=80 “We are leaving the age of information and entering the age of recommendation” — Chris Anderson in The Long Ta转载 2014-12-18 09:14:14 · 1708 阅读 · 0 评论 -
LdaGibbsSampler.java lda代码
原文链接:http://blog.csdn.net/zhoubl668/article/details/8959940/* * (C) Copyright 2005, Gregor Heinrich (gregor :: arbylon : net) (This file is * part of the org.knowceans ex转载 2014-12-26 08:53:59 · 609 阅读 · 0 评论