Classification of Alzheimer’s Disease Using Whole Brain Hierarchical Network

 The main contributions of this paper can be summarized as follows:
            A hierarchical network is constructed to provide the complementary information for classification.
            New ROIS combinations and feature selection methods are also proposed.
            The MKBoost based classification method is used for AD and MCI diagnosis based on MRI data.


1.DATA

The cohort consisted of 200 patients with Alzheimer’s Disease (AD), 120 subjects that had mild cognitive impairment and converted to AD within 18 months (MCIc), 160 subjects with mild cognitive impairment that did not convert (MCInc) and 230 healthy controls (HC).


2. DATA PREPROCESSING

Firstly, non-parametric non-uniform bias correction (N3) algorithm  is used to correct intensity inhomogeneity. Secondly, the skull and cerebellum are removed by using BET . Thirdly, each MRI brain image is further segmented into three tissue types, namely gray matter (GM), white matter (WM) and CSF by using FAST . Finally, all brain images are affine aligned by FLIRT .

3.Hierarchical Network Construction

         In this article, we define the layers Lc,where c=1,2,3,4, to represent a brain of different number of ROIs as shown in Fig.3. The details of each layer are as follows:
       The layer L4 contains 90 original ROIs based on AAL atlas.
       The layer L3 contains 54 ROIs. A group of ROIs in L4 are merged into an ROI in L3 if their first two digits and the last digit are the same, for example, Cingulum Ant L (4001), Cingulum Mid L (4011) and Cingulum Post L (4021) are considered as an ROI in the layer L3.
        Similar to the process of the layer L3. A group of ROIs in L4 are merged into an ROI in L2 if their first and the last digit are the same, for example,Cingulum Ant L (4001), Cingulum Mid L (4011), Cingulum Post L (4021), Hippocampus L (4101), ParaHippocampal L (4111) and Amygdala L (4201)are considered as an ROI in the layer L2. The layer L2 contains 14 ROIs.

         The layer L1 contains only one ROI, that is the whole brain.

4.The Representation and Connectivity of the ROIs

         In this section, GLCM is used to extract 3D texture parameters of each ROI indirections.

         We then calculate the average texture parameters of each ROI in four directions.

         Afterwards, the connectivity between each pair of ROIs is evaluated by Pearsons correlation coefficients.


In this study, the F-score method is employed for feature ranking.

5.  Classification and Multiple Kernel Learning

In this paper, we use MKBoost algorithm proposed by Hao et al. [32] for classification tasks.

For each data set,we create a set of 13 base kernels, i.e.,



6. RESULTS AND DISCUSSION

  In this article, a 10-fold cross validation strategy is employed to evaluate the performance of the classifier.

Accuracy (ACC), sensitivity (SEN), and specificity (SPE) are used to quantify the performance of the classifier based on the results of 10-fold cross validation.


where TP, FP, TN, and FN are the numbers of true positives,false positives, true negatives, and false negatives, respectively.

In addition, we also report the area under receiver operating characteristic (ROC) curve (AUC). The AUC value is an important index to measure the overall-performance of classification methods, and the higher the AUC value, the better the performance of the classification method.


内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值