Classification of Alzheimer’s Disease Using Whole Brain Hierarchical Network

 The main contributions of this paper can be summarized as follows:
            A hierarchical network is constructed to provide the complementary information for classification.
            New ROIS combinations and feature selection methods are also proposed.
            The MKBoost based classification method is used for AD and MCI diagnosis based on MRI data.


1.DATA

The cohort consisted of 200 patients with Alzheimer’s Disease (AD), 120 subjects that had mild cognitive impairment and converted to AD within 18 months (MCIc), 160 subjects with mild cognitive impairment that did not convert (MCInc) and 230 healthy controls (HC).


2. DATA PREPROCESSING

Firstly, non-parametric non-uniform bias correction (N3) algorithm  is used to correct intensity inhomogeneity. Secondly, the skull and cerebellum are removed by using BET . Thirdly, each MRI brain image is further segmented into three tissue types, namely gray matter (GM), white matter (WM) and CSF by using FAST . Finally, all brain images are affine aligned by FLIRT .

3.Hierarchical Network Construction

         In this article, we define the layers Lc,where c=1,2,3,4, to represent a brain of different number of ROIs as shown in Fig.3. The details of each layer are as follows:
       The layer L4 contains 90 original ROIs based on AAL atlas.
       The layer L3 contains 54 ROIs. A group of ROIs in L4 are merged into an ROI in L3 if their first two digits and the last digit are the same, for example, Cingulum Ant L (4001), Cingulum Mid L (4011) and Cingulum Post L (4021) are considered as an ROI in the layer L3.
        Similar to the process of the layer L3. A group of ROIs in L4 are merged into an ROI in L2 if their first and the last digit are the same, for example,Cingulum Ant L (4001), Cingulum Mid L (4011), Cingulum Post L (4021), Hippocampus L (4101), ParaHippocampal L (4111) and Amygdala L (4201)are considered as an ROI in the layer L2. The layer L2 contains 14 ROIs.

         The layer L1 contains only one ROI, that is the whole brain.

4.The Representation and Connectivity of the ROIs

         In this section, GLCM is used to extract 3D texture parameters of each ROI indirections.

         We then calculate the average texture parameters of each ROI in four directions.

         Afterwards, the connectivity between each pair of ROIs is evaluated by Pearsons correlation coefficients.


In this study, the F-score method is employed for feature ranking.

5.  Classification and Multiple Kernel Learning

In this paper, we use MKBoost algorithm proposed by Hao et al. [32] for classification tasks.

For each data set,we create a set of 13 base kernels, i.e.,



6. RESULTS AND DISCUSSION

  In this article, a 10-fold cross validation strategy is employed to evaluate the performance of the classifier.

Accuracy (ACC), sensitivity (SEN), and specificity (SPE) are used to quantify the performance of the classifier based on the results of 10-fold cross validation.


where TP, FP, TN, and FN are the numbers of true positives,false positives, true negatives, and false negatives, respectively.

In addition, we also report the area under receiver operating characteristic (ROC) curve (AUC). The AUC value is an important index to measure the overall-performance of classification methods, and the higher the AUC value, the better the performance of the classification method.


摘要: 阿尔茨海默病(Alzheimer's disease,AD)是一种神经退行性疾病,是老年人口中最常见的病症之一。当前,基于磁共振成像(MRI)的多模态分析已成为诊断AD的重要辅助手段。然而,MRI数据中存在着大量的噪声和不确定性,且不同模态间的信息存在着差异,这给AD的诊断和分类带来了很大的挑战。本文提出了一种基于分层卷积神经网络(H-CNN)的多模态MRI分类方法。我们首先使用三种不同的MRI模态(T1加权、FLAIR和DWI)获取脑部结构、病变和功能信息,然后采用H-CNN对这些信息进行联合建模、特征提取和分类。实验结果表明,所提出的方法在AD分类任务上取得了最优的性能。 关键词: 阿尔茨海默病;多模态MRI;卷积神经网络;分层结构;分类 1. 简介 随着人口老龄化程度的不断加深,阿尔茨海默病(Alzheimer's disease,AD)已经成为老年人口中最为常见的失智症之一。AD主要表现为记忆力衰退、认知功能障碍和情绪不稳定等症状,严重影响患者的生活质量。目前,临床上主要采用神经心理学测试和影像学检查等手段对AD进行诊断和分类。其中,磁共振成像(MRI)已经成为一种非常重要的辅助诊断手段,它可以提供脑部结构、病变和功能等多方面的信息。 然而,MRI数据中存在着大量的噪声和不确定性,且不同模态间的信息存在着差异,这给AD的诊断和分类带来了很大的挑战。为了克服这些困难,近年来研究人员提出了许多基于机器学习和深度学习的AD分类方法。其中,卷积神经网络(CNN)已经被广泛应用于MRI数据的处理和分析。CNN可以自动从数据中学习特征,并且对噪声和不确定性具有较强的鲁棒性。 然而,目前的大多数CNN模型都是针对单一模态的MRI数据进行设计的,这限制了它们的分类性能。为了更好地利用MRI数据中的多模态信息,我们提出了一种基于分层卷积神经网络(H-CNN)的多模态MRI分类方法。我们使用三种不同的MRI模态(T1加权、FLAIR和DWI)获取脑部结构、病变和功能信息,然后采用H-CNN对这些信息进行联合建模、特征提取和分类。实验结果表明,所提出的方法在AD分类任务上取得了最优的性能。 2. 相关工作 近年来,基于机器学习和深度学习的AD分类方法已经得到了广泛的研究。其中,CNN是一种非常常用的深度学习模型,已经被应用于MRI数据的处理和分析。例如,Sarraf和Tofighi[1]提出了一种基于3D-CNN的AD分类方法,该方法可以从三维MRI数据中提取特征并进行分类。Wang等人[2]提出了一种基于深度卷积神经网络(DCNN)的AD分类方法,该方法可以自动学习MRI数据中的特征并进行分类。Li等人[3]提出了一种基于深度信念网络(DBN)的AD分类方法,该方法可以对MRI数据进行降维和特征提取,并且可以处理多模态MRI数据。 尽管这些方法在AD分类任务中取得了一定的成功,但它们都是针对单一模态的MRI数据进行设计的,而忽略了MRI数据中的多模态信息。为了更好地利用MRI数据中的多模态信息,一些研究人员提出了基于多模态MRI数据的AD分类方法。例如,Li等人[4]提出了一种基于多模态脑图像的AD分类方法,该方法可以联合处理T1加权和FLAIR模态的MRI数据。Zhang等人[5]提出了一种基于多模态MRI数据的AD分类方法,该方法可以联合处理T1加权、T2加权和FLAIR模态的MRI数据。 然而,这些方法仍然存在一些问题。首先,它们通常采用简单的模型结构,无法充分利用MRI数据中的多模态信息。其次,它们的特征提取过程通常是手工设计的,无法自动学习MRI数据中的特征。最后,它们的分类性能仍然有待进一步提高。 3. 方法 为了更好地利用MRI数据中的多模态信息,我们提出了一种基于分层卷积神经网络(H-CNN)的多模态MRI分类方法。我们使用三种不同的MRI模态(T1加权、FLAIR和DWI)获取脑部结构、病变和功能信息,然后采用H-CNN对这些信息进行联合建模、特征提取和分类。 具体来说,我们首先将三种不同的MRI模态分别输入到三个单独的卷积神经网络中,以进行局部特征提取。然后,我们采用一个分层卷积神经网络(H-CNN)将这些局部特征进行联合建模。H-CNN由多个卷积层和池化层组成,每个卷积层和池化层都包含多个子层。在每个子层中,我们使用不同的卷积核和池化核来提取不同尺度的特征。最后,我们将H-CNN的输出传递给全连接层,并使用softmax函数对其进行分类。 4. 实验结果 为了评估所提出的方法的性能,我们使用了一个包含200名AD患者和200名正常对照组的数据集。我们将数据集分为训练集、验证集和测试集,其中训练集和验证集用于模型训练和调优,测试集用于评估模型的性能。我们使用了准确率、召回率、F1值和AUC等指标来评估模型的性能。 实验结果表明,所提出的方法在AD分类任务上取得了最优的性能。具体来说,我们的方法在测试集上的准确率、召回率、F1值和AUC分别为93.2%、91.8%、92.5%和0.974,远高于其他方法。这表明,我们的方法可以有效地利用MRI数据中的多模态信息,并且具有较强的分类性能。 5. 结论 本文提出了一种基于分层卷积神经网络(H-CNN)的多模态MRI分类方法,该方法可以有效地利用MRI数据中的多模态信息,并且具有较强的分类性能。实验结果表明,所提出的方法在AD分类任务上取得了最优的性能。未来,我们将进一步改进该方法,并将其应用于其他相关疾病的诊断和分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值