关于DFT变换含义、公式和具体形式

原文地址:http://blog.sina.com.cn/s/blog_7853c3910102v9wd.html


这篇文章从实际工程应用的角度,记录一下如何计算,关于公式、变形和应用。

 

维基百科上的DFT公式:
对于N点序列,它的离散傅里叶变换(DFT)为

Discrete Fourier Transform Formula

 

有时候也能见到等式右边的系数不是1,而是1/N或者1/√N,最常用的还是系数为1的,只要保持“DFT变换”和“IDFTDFT反变换)变换”系数一致就好。


我们知道:关于DFT变换含义、公式和具体形式

假设 关于DFT变换含义、公式和具体形式, 那么公式变形为:

关于DFT变换含义、公式和具体形式

进一步:

 

关于DFT变换含义、公式和具体形式


所以其实DFT变换就是两个“相关(correlation)”操作,一个是与频率为KCOS序列相关,一个是与频率为KSIN序列相关,然后两者叠加就是与频率K的正弦波相关的结果,如果赋值很大,就表明信号包含频率为K的能量很大。

 

这里简单举个简单例子,假设序列x(n)=[1 0 -1 0],N=4

k=0,那么:

X(0)=[1 0 -1 0]*[1 1 1 1]’-i[1 0 -1 0]*[0 0 0 0]’

=0+i*0

也就是说其直流(DC)分量为0

k=1,那么:

X(1)= [1 0 -1 0]*[1 0 -1 0]’-i[1 0 -1 0]*[0 1 0 -1]’

      = 2-i*0

也就是说其一次谐波分量值很大,并且是和COS波形最相似(SIN分量能量为0

k=2那么:

X(2)= [1 0 -1 0]*[1 -1 1 -1]’-i[1 0 -1 0]*[0 0 0 0]’

      = 0-i*0

也就是说其二次谐波分量值为0.

X(3)= [1 0 -1 0]*[1 0 -1 0]’-i[1 0 -1 0]*[0 -1 0 -1]’

      = 2+i

嗯??怎么三次谐波分量居然那么大,哦,原来是采样频率不够大,其三次谐波根本就恢复不出来。

 

 

这里我要专门研究一下关于角度的问题,还是和上面类似的例子,假设序列x(n)=[ √2/2  -√2/2  -√2/2  √2/2],N=4 k=1,那么:

X(1)= [ √2/2  -√2/2  -√2/2  √2/2 ]*[1 0 -1 0]’-i[ √2/2  0 -√2/2 0]*[0 1 0 -1]’

      = √2+i*√2

也就是说一次谐波的相位是PI/4,而不是-PI/4。有时候应用DFT的时候关于DFT变换含义、公式和具体形式 里面第二项的”-“号容易被忽略。另外函数ATAN2的含义是:

 

 ATAN2Y坐标,X坐标)

\arg(X_k) = \operatorname{atan2}\big( \operatorname{Im}(X_k), \operatorname{Re}(X_k) \big)=-i*\operatorname{ln}\left(\frac{X_k}{|X_k|}\right),


但是”-“号被忽略其实也不是大问题,只是计算出来的虚部符号相反,并不影响幅值(magnitude),而相位会相反,只要保证后续处理一致,那么相位和标准DFT定义相反也没关系。我们的设计当中就是定义的和标准DFT相位相反。


<think>好的,我现在需要帮助用户找到离散傅里叶变换DFT逆离散傅里叶变换(IDFT)的数学公式。根据用户提供的引用资料,我需要仔细查看每个引用的内容,找到相关的公式。 首先看引用[1],它提到了离散傅里叶变换DFT)的推导,但具体公式可能没有给出。接下来是引用[2],里面明确提到离散傅里叶正变换的输入是N个时域样点数据x(n),输出是N个频域样点数据X(k),并且有表达式过程图。这里应该包含DFT的正变换公式。引用[3]则详细推导了DFTIDFT公式,可能同时给出正变换变换的数学表达式。引用[4]提到了DFTIDFT的实现,可能涉及公式的应用,但不确定是否有具体公式。 根据引用[2],离散傅里叶正变换的表达式应该是: X(k) = Σ_{n=0}^{N-1} x(n) * e^{-j2πkn/N} 而逆变换公式可能在引用[3]中推导出来,形式应该是: x(n) = (1/N) Σ_{k=0}^{N-1} X(k) * e^{j2πkn/N} 需要确认这些公式是否正确,并且是否有归一化系数的不同处理。有些资料可能将1/N放在正变换或逆变换中,需要根据用户提供的引用来确定。 查看引用[3],里面提到综合视角下的系数修正,可能说明正变换没有系数,而逆变换有1/N。引用[2]的正变换表达式也没有系数,因此可以确定用户提供的资料中DFTIDFT公式如上述所示。因此,正确的DFTIDFT公式应该如上述,并且需要按照数学格式使用$$...$$来展示独立公式,行内公式用$...$。同时,根据用户的引用来源,需要正确标注引用标记,例如引用[2]引用[3]。 最后,生成相关问题时要围绕DFTIDFT的应用、推导、系数处理以及实际应用场景,确保问题相关且有深度。需要检查是否符合用户的所有要求,包括格式、引用、问题生成等。</think>离散傅里叶变换DFT逆离散傅里叶变换(IDFT)的数学公式如下: ### 1. 离散傅里叶变换DFTDFT将时域离散信号$x(n)$转换为频域信号$X(k)$,公式为: $$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn}, \quad k=0,1,\dots,N-1$$ 其中$N$为采样点数,$x(n)$是时域序列,$X(k)$是频域序列[^2][^3]。 ### 2. 逆离散傅里叶变换(IDFT) IDFT将频域信号$X(k)$还原为时域信号$x(n)$,公式为: $$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}kn}, \quad n=0,1,\dots,N-1$$ 注意IDFT公式中的归一化系数$\frac{1}{N}$,其位置可能因不同定义而调整[^3][^4]。 --- ### 公式说明 - **DFT**通过复指数基函数分解信号,得到各频率分量的幅度相位。 - **IDFT**通过叠加所有频率分量重建原始信号。 - 两者均满足正交性,通过复指数函数的正交性保证变换可逆[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值