[1] Mingxiao Li, Feng Lu, Hengcai Zhang & Jie Chen (2018): Predicting future locations of moving objects with deep fuzzy-LSTM networks, Transportmetrica A: Transport Science, DOI: 10.1080/23249935.2018.1552334.
To link to this article: https://doi.org/10.1080/23249935.2018.1552334
文章目录
Abstract
Trajectory prediction plays an important role in supporting many advanced applications such as location-based services and advanced intelligent traffic managements. Most existing trajectory prediction methods employed fixed spatial division and focused on human closeness movement patterns. However, these methods could lead to a sharp boundary limitation and ignore the periodic characteristics of human mobility. This paper proposes a novel trajectory prediction method based on long short-term memory network (LSTM) called the trajectory predictor with fuzzy-long short-term memory network (TrjPre-FLSTM). First, we introduce a new fuzzy trajectory concept and extend the LSTM to a fuzzy-LSTM to overcome the sharp boundary limitation. Second, we explicitly incorporate the periodic movement patterns of moving objects in the trajectory prediction. Using a real-world mobile phone dataset, we evaluate the performance of TrjPre-FLSTM with two latest competitors. The case study results indicate that the proposed method outperforms the comparative methods in terms of the prediction accuracy.
🦓 现有的轨迹预测方法大多采用固定的空间划分方法,主要关注人的接近度运动模式。这些方法可能会导致一个尖锐的边界限制
(两个相邻的轨迹点被划分到不同的grid中,丢失了它们的某些关系信息),并忽略了人类移动的周期性特征
。
🦓 提出了基于模糊长短时记忆网络的轨迹预测模型
—— TrjPre-FLSTM
。
🦓 首先,我们引入了一个新的模糊轨迹
概念,并将LSTM扩展为一种Fuzzy-LSTM
来克服尖锐的边界限制。第二,我们明确地在轨迹预测中包含运动对象的周期性运动模式
。
🦓 使用真实世界的手机数据集,我们用两个最新的方法评估TrjPre-FLSTM的性能。结果表明,该方法在预测精度上优于其他方法。
❀❀❀ 自己总结
:
对传统的输入到LSTM中的轨迹做了两点改进:1. 模糊轨迹 2. 通过周期性(periodic)和接近性(closeness)划分子轨迹,分别作为两个LSTM的输入;然后为了适应新的轨迹输入,将轨迹的邻居集合 N N N- S e q T r a j Seq_{Traj} SeqTraj作为新的输入,将隶属度集合 M M M- S e q T r a j Seq_{Traj} SeqTraj作为 N N N- S e q T r a j Seq_{Traj} SeqTraj的权重矩阵进行网络训练,将两个LSTM的结果进行融合,然后进行位置预测。
关键点:
- fuzzy trajectory
- fuzzy-LSTM
- 周期性
KEYWORDS
- location prediction
- fuzzy space partition
- mobile phone data
- trajectory data mining
- deep learning
1 Introduction
轨迹预测问题相关研究可以大致分为3类:
A. 基于移动状态推导的方法
:利用运动对象的基本运动特性,如位置、速度、运动方向和环境条件,来模拟未来的位置。
B. 基于频繁模式挖掘的方法
:依赖于对历史轨迹的先验知识挖掘来预测未来的位置。
C. 基于机器学习的方法
:从历史轨迹中探索运动物体的行为特征来改进模型,如Markov model, 概率图模型,SVM, 神经网络模型等。
本 文 的 贡 献 \color {darkred}{本文的贡献} 本文的贡献:
- 将 模 糊 空 间 划 分 \color{orange}{模糊空间划分} 模糊空间划分方法引入轨迹预测领域,生成模糊轨迹以解决边界的尖锐限制。这有助于发现更多潜在的空间近似频繁模式,从而显著提高轨迹预测的精度和可靠性。
- 我们提出了一种改进的LSTM的单元结构,称为 F u z z y − L S T M \color{blue}{Fuzzy-LSTM} Fuzzy−LSTM。它能很好地适应模糊空间划分,并能有效地学习历史轨迹的长期时空格局。
- 该方法考虑了人类运动行为的连续性和周期性特征,在预测过程中同时考虑了 时 间 接 近 性 和 周 期 性 运 动 模 式 \color{green}{时间接近性和周期性运动模式} 时间接近性和周期性运动模式,以获得更高的预测精度。
- 我们使用一个真实的、连续的移动通信信令数据集来评估我们提出的方法,该数据集在现实世界中收集了10万名用户,在15天的时间内,定位点的数量超过了1亿。结果表明,与基于Markov模型的下一位置预测器(NLPMM)和naïve LSTM两种最新方法相比,我们的方法具有优势。
2. 问题陈述
-
传统的轨迹分割(
将空间划分为多个网格单元
,并将每个轨迹表示为一维序列):
如 T r a j = ( p 1 , t 1 ) , ( p 2 , t 2 ) , . . . , ( p n , t n ) Traj = (p_1,t_1), (p_2,t_2), ..., (p_n,t_n) Traj=(p1,t1),(p2,t2),...,(pn,tn),经过传统的轨迹网格分割后,轨迹被表示为 G T r a j = ( s 1 , t 1 ) , ( s 2 , t 2 ) , . . . , ( s n , t n ) G_{Traj} = (s_1,t_1), (s_2,t_2), ..., (s_n,t_n) GTraj=(s1,t1),(s2,t2),...,(sn,tn), 其中 s i s_i si表示grid cell ID. -
预测问题可以看作是一个序列生成任务,目标是预测下一个最有可能的单元(cell)。
3. TrjPre-FLSTM方法
方法的处理过程:
- 解释了 模 糊 轨 迹 \color{green}{模糊轨迹} 模糊轨迹 的生成,这有助于克服尖锐的边界限制。
- 展示了 F u z z y − L S T M 网 络 在 原 有 L S T M 网 络 基 础 上 的 改 进 \color{orange}{Fuzzy-LSTM网络在原有LSTM网络基础上的改进} Fuzzy−LSTM网