范数的一般理解

范数

向量范数

1-范数

∣ ∣ x ∣ ∣ 1 = ∑ i = 1 N ∣ x i ∣ ||x||_1 = \sum_{i=1}^{N}|x_i| x1=i=1Nxi,即向量所有元素绝对值的和

2-范数

$||x||2 = \sqrt{\sum{i=1}{N}x_i2} $,即向量所有元素平方之和再开根号

∞ \infty -范数

∣ ∣ x ∣ ∣ ∞ = max ⁡ i ∣ x i ∣ ||x||_{\infty} = \max_i|x_i| x=maxixi,即向量x所有元素中绝对值最大的那个

− ∞ -\infty -范数

∣ ∣ x ∣ ∣ − ∞ = min ⁡ i ∣ x i ∣ ||x||_{-\infty} = \min_i|x_i| x=minixi,即向量x所有元素中绝对值最小的那个

p-范数

∣ ∣ x ∣ ∣ p = ( ∑ i = 1 N ∣ x i ∣ p ) 1 p ||x||_p = (\sum_{i=1}^N{|x_i|^p})^{\frac{1}{p}} xp=(i=1Nxip)p1,即向量x所有元素的绝对值的p次方之和再开p次方

矩阵范数

1-范数

∣ ∣ A ∣ ∣ 1 = max ⁡ j ∑ i = 1 N ∣ a i , j ∣ ||A||_1 = \max_j{\sum_{i=1}^N{|a_{i,j}|}} A1=maxji=1Nai,j,列和范数,即所有矩阵列向量绝对值之和的最大值。

2-范数

∣ ∣ A ∣ ∣ 1 = λ , λ 为 A T A ||A||_1 = \sqrt{\lambda},\lambda为A^TA A1=λ ,λATA的最大特征值,谱范数,即A`A矩阵的最大特征值开平方。

∞ \infty -范数

∣ ∣ A ∣ ∣ 1 = max ⁡ i ∑ j = 1 N ∣ a i , j ∣ ||A||_1 = \max_i{\sum_{j=1}^N{|a_{i,j}|}} A1=maxij=1Nai,j,行和范数,即所有矩阵行向量绝对值之和的最大值。

F-范数

∣ ∣ A ∣ ∣ 1 = ∑ i = 1 m ∑ j = 1 m ∣ a i , j ∣ 2 ||A||_1 = \sqrt{\sum_{i=1}^m \sum_{j=1}^m |a_{i,j}|^2} A1=i=1mj=1mai,j2 ,Frobenius范数,即矩阵元素绝对值的平方和再开平方。
参考链接:
https://www.zhihu.com/question/20473040/answer/102907063

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值