题解:我们可以先来看一下当输入的小于3时候,都是不存在的,所以先判断一下,当大于3时候开始用map存图,因为map是一一对应的关系,我们可以先算出来全部的距离,然后再进行下一步操作,具体情况看下代码应该就能理解了。
题目描述
曾经有两个来自吉尔尼斯的人(A和C)恋爱了,他们晚上经常在一起看头上的那片名为假的回旋星空,
有一天他们分手了,A想通过回旋星空测量他们之间的复合指数,测量的规则是,
计算回旋图标的个数,即选中三颗星星,分别作为回旋图标的起点,拐点和终点,假设现在有三个
星星分别为i,j,k,如果d(a[i],a[j]) == d(a[j],a[k])则表示找到了一个回旋图标,其中d(x,y)表示这两个点的欧氏距离
为了给它很大的希望(i,j,k)和(k,j,i)被认为是两个不同的回旋图标
A花了一晚上终于把整片星空映射到了一张二平面图上,由于星星太多以至于A有点懵逼,所以
你能帮帮他吗,要不然他可能真的WA的一声哭了出来
作为埃森哲公司的一员,你在解决问题的同时也向A介绍了埃森哲公司的业务范围。
为了全方位地满足客户的需求,正在不断拓展自身的业务服务网络,包括管理及信息技术咨询、企业经营外包、企业联盟和风险投资。除了以产品制造业、通信和高科技、金融服务、资源、政府机构等不同行业划分服务内容之外,还从以下几方面提供咨询服务:
1.客户关系管理
2.业务解决方案
3.电子商务
4.供应链管理
1.客户关系管理
2.业务解决方案
3.电子商务
4.供应链管理
输入描述:
第一行一个整数T(T<=10),表示组数
对于每组数据有一个n,表示有n个小星星(0< n < 1000)
接下来跟着n行,每行跟两个整数xi和yi表示每个星星的坐标(-10000< xi, yi<10000)
输出描述:
对于每组数据,如果没有找到回旋图标输出”WA”,否则输出找到图标个数
示例1
输入
2 2 1 0 0 1 3 1 0 0 1 0 0
输出
WA 2
备注:
没有重复的星星,且选中的三个星星是互相不一样的(即下标不同)
欧氏距离即直线距离
#include<iostream>
#include <map>
#include <math.h>
using namespace std;
int main()
{
int n;
cin>>n;
while(n--)
{
int t,a[9999],b[9999],ans=0;
cin>>t;
for(int i=0;i<t;i++)
{
cin>>a[i]>>b[i];
}
if( t < 3 )
{
cout<<"WA"<<endl;
continue;
}
else
{
for(int i=0;i<t;i++)
{
map<double,int> M;
for(int j = 0 ; j < t ; j ++)
{
if(i != j)
{
double v=sqrt((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
M[v]++;
}
}
for(map<double,int>::iterator it = M.begin(); it != M.end(); it++)
{
ans+=(*it).second * ((*it).second-1);
}
}
}
if(ans==0)
cout<<"WA"<<endl;
else
cout<<ans<<endl;
}
return 0 ;
}