我是怎样阅读技术论文的

需要通过paper获取知识,找到新的解决思路是很常见的办法。但是在工作中由于压力常常会随便找一些paper读一些,做少量的思考就开始做了,这样往往不能对研究的对象不能有一个整体的看法,做了也仅仅是做了。描绘研究对象概念的内涵和外延,描绘一个知识树,然后再去研究我们需要的那个点。下面给出了我自己的一...

2014-05-26 00:06:01

阅读数:2224

评论数:5

社会化网络分析

节点中心性是指网络中每个词在网络中处于什么地位。中心势反映整个词网中各个节点的差异性程度。由于计算方法的不同,节点中心度分为点度中心度,中间中心度和接近中心度。网络的中心势也分为点度中心势、中间中心势和接近中心势。   点度中心性 中间中心性 接近中心性 绝对点度中心度

2014-05-23 17:24:29

阅读数:1246

评论数:2

基于领域相关度和领域一致度的领域术语抽取实现

需要准备几个领域,每个领域准备大量的文本。比如:军事、科技、体育、财经、汽车、房产等等。 有一些数据是不完整的,甚至是脏数据,需要在数据准备好之后做数据清洗,删除包含乱码的文本、删除英文文本、删除内容重复的文档,删除包含大量HTML标签的文档,删除内容中大量重复的内容(如:预料是新闻,可能会每篇...

2014-05-23 17:05:33

阅读数:1052

评论数:0

地球物理学部分术语共现图

地球物理学部分术语共现图

2014-05-23 16:37:26

阅读数:1296

评论数:0

三国人物共现网络

三国部分人物共现图

2014-05-23 16:28:37

阅读数:1456

评论数:2

Mahout 模糊kmeans

FCM 算法用一个Job寻找cluster的中心点。在map的初始化节点,加载初始化(或上一轮迭代的结果)中心点。在map中计算point 和每一个簇的亲和度。在combiner计算同一个cluster的参数,该过程只能计算同一cluster的局部信息。在reduce中首先计算同一个cluster...

2014-05-23 15:52:27

阅读数:2096

评论数:0

Mahout kmeans聚类

K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。Mahout kmeans MapReduce实现的原理和上述的一致,...

2014-05-23 15:41:52

阅读数:3024

评论数:1

Mahout canopy聚类

Canopy有消除孤立点的作用,而K-means在这方面却无能为力。建立canopies之后,可以删除那些包含数据点数目较少的canopy,往往这些canopy是包含孤立点的。根据canopy内点的数目,来决定聚类中心数目k,这样效果比较好。 在执行Canopy之前需要用将文本合并,然后用Ma...

2014-05-23 15:37:53

阅读数:1860

评论数:0

Mahout LDA 聚类

Dirichlet聚类是一种基于模型的聚类方法,其基本思想是初始化一些模型,并按不同比重混合起来,然后我们把数据分配到各个模型中,根据当前划分更新模型参数,不断重复数据分配和参数更新的过程,直到设定的最大迭代次数,这时得到了最终的模型参数,同时也完成了聚类任务。

2014-05-22 12:42:31

阅读数:3269

评论数:0

Mahout fp-growth

Apriori算法的一个主要瓶颈在于,为了获得较长的频繁模式,需要生成大量的候选短频繁模式。FP-Growth算法是针对这个瓶颈提出来的全新的一种算法模式。目前,在数据挖掘领域,Apriori和FP-Growth算法的引用次数均位列三甲。参看论文《Mining Frequence Patterns...

2014-05-22 11:05:36

阅读数:2481

评论数:0

Mahout朴素贝叶斯文本分类

Mahout贝叶斯分类器按照官方的说法,是按照《Tackling the PoorAssumptions of Naive Bayes Text Classiers》实现的。分为三个模块:训练、测试和分类。该文档首先简要介绍朴素贝叶斯的基本原理,然后介绍MapReduce实现的思路。

2014-05-22 10:53:33

阅读数:2851

评论数:0

Mahout决策森林

在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 而 "Random Forests" 是他们的商标。 这个术语是1995年由贝尔实验室的Tin K...

2014-05-22 10:45:28

阅读数:2073

评论数:0

Mahout文本向量化

在文本聚类之前,首先要做的是文本的向量化。该过程涉及到分词,特征抽取,权重计算等等。Mahout 提供了文本向量化工具。由于Mahout 向量化算法要处理的文件是Hadoop SequenceFile ,需要将普通的文本文件转成SequenceFile格式,然后在向量化。 Sequenc...

2014-05-22 10:43:02

阅读数:2081

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭