疾风计划:离散数学丨第一章_命题逻辑

一、命题逻辑

1.1 命题

定义:用陈述句表示的一个或者为真或者为假,但不能同时既为真又为假的判断语句。

  • 判断结果唯一的陈述句。
  • 客观上存在唯一真值的陈述句。

命题的真值:判断的结果,真(T或1)或假(F或0)
真命题:真值为真的命题
假命题:真值为假的命题

序号句子是否为命题解释
1北京是中国的首都。Y真命题
22+3=6Y假命题
33-x=5N真值不确定
4请关上门。N祈使句
5几点了?N疑问句
6除地球外的星球有生物。Y真值确定但未知
7多漂亮的花啊!N感叹句
8我只给所有不给自己理发的人理发。N悖论

命题的表示:表示命题的符号称为命题变量,通常用p、q、r…表示命题变量。命题变量没有真值,只有表示一个确定的命题后才有真值。

  • 如用p表示命题“2+3=6”,这时p的真值为假(F)
  • 用p表示命题“2+3=5”,这时p的真值为真(T)

1.2 连接词

简单命题(原子命题):不能分解为更简单陈述语句的命题。

  • 【例】“北京是中国的首都。”

复合命题:由两个或几个简单句和连词组合而成的命题。

  • 【例】“如果明天天气好,我们就去爬山。”

命题的符号化:用英文字母或英文字母和连接词的组合表示命题,称为命题的符号化。

1.2.1 否定 ¬ \neg ¬

定义: p p p 为一命题,则 p p p 的否定记作 ¬ p \neg p ¬p,指“不是 p p p 所指的所有情形”。命题 ¬ p \neg p ¬p读作“非 p p p ”。 p p p 的否定( ¬ p \neg p ¬p )的真值和 p p p 的真值相反。

在这里插入图片描述

1.2.2 合取 ∧ \land

定义: p p p q q q 为命题。 p 、 q p、q pq的合取即命题 “ p p p 并且 q q q ” ,记作 p ∧ q p\land q pq。当 p p p q q q 都为真时, p ∧ q p\land q pq 命题为真,否则为假。

在这里插入图片描述

1.2.3 析取 ∨ \lor

定义: p p p q q q 为命题。 p 、 q p、q pq的析取即命题 “ p p p q q q ” ,记作 p ∨ q p\lor q pq。当 p p p q q q 都为假时, p ∨ q p\lor q pq 命题为假,否则为真。

在这里插入图片描述

  • 析取对应自然语言中的兼容或,如:“电灯不亮是灯泡或线路有问题导致的”。这句话意味着电灯不亮的原因可能是灯泡有问题,也可能是线路有问题,也可能是灯泡和线路都有问题

1.2.4 异或 ⊕ \oplus

定义: p p p q q q 为命题。 p 、 q p、q pq 的异或记作 p ⊕ q p\oplus q pq:当 p p p q q q 恰好有一个为真时, p ⊕ q p\oplus q pq 命题为真,否则为假。

在这里插入图片描述

  • 异或对应自然语言中的不兼容或。如“她的梦想是成为一名老师或医生”。这句话的含义是,她的梦想是成为老师或医生其中之一,而不能即成为老师又成为医生

1.2.5 条件语句(蕴含) → \rightarrow

定义: p p p q q q 为命题。条件语句 p → q p\rightarrow q pq是命题 “如果 p p p ,则 q q q ”。当 p p p为真而 q q q 为假时,条件语句 p → q p\rightarrow q pq 命题为假,否则为真。在条件语句 p → q p\rightarrow q pq中, p p p 称为假设(前件、前提), q q q 称为结论(后件)。

在这里插入图片描述
由于条件语句在数学推理中具有很重要的作用,所以表达 p → q p\rightarrow q pq的术语也很多。以下列举几个常用的条件语句表述方法:

  • “如果 p p p ,则 q q q
  • “如果 p p p q q q
  • p p p q q q 的充分条件”
  • q q q 如果 p p p
  • q q q p p p
  • p p p 的必要条件是 q q q
  • q q q 除非 ¬ p \neg p ¬p
  • p p p 蕴含 q q q
  • p p p 仅当 q q q
  • q q q 的充分条件是 p p p
  • q q q 每当 p p p
  • q q q p p p 的必要条件”
  • q q q p p p得出”
  • q q q 假定 p p p

因为蕴含式 p p p 蕴含 q q q的众多表达方式中有些容易引起混淆,这里提供一些消除混淆的建议。记住 p p p 仅当 q q q表达了与“如果 p p p,则 q q q同样的意思。注意 p p p 仅当 q q q说的是当 q q q 不为真时 p p p 不能为真。也就是说,如果 p p p 为真但 q q q 为假,则这个语句为假。当 p p p为假时, q q q 可以为真也可以为假,因为语句并没有谈及 q q q 的真值。

1.2.6 等值式(双向蕴含) ↔ \leftrightarrow

定义: p p p q q q 为命题。双条件语句 p ↔ q p\leftrightarrow q pq是命题 “ p p p 当且仅当 q q q ”。当 p p p q q q 有同样真值时,双条件语句 p ↔ q p\leftrightarrow q pq 命题为真,否则为假。双条件语句也称双向蕴含。

在这里插入图片描述

1.2.7 与非 ↑ \uparrow 和或非 ↓ \downarrow

与非: p p p q q q 为命题。 p 、 q p、q pq 的与非记作 p ↑ q p\uparrow q pq:当 p p p q q q 均为真时, p ↑ q p\uparrow q pq 命题为假,否则为真。

或非: p p p q q q 为命题。 p 、 q p、q pq 的或非记作 p ↓ q p\downarrow q pq:当 p p p q q q 均为假时, p ↓ q p\downarrow q pq 命题为真,否则为假。

表 7 与非或非的真值表

在这里插入图片描述

1.2.8 逻辑运算符的优先级

在这里插入图片描述

1.3 命题公式及其分类

1.3.1 命题公式

命题常元:代表特定的简单命题。
命题变元:代表任意命题,取值1或0的变量。

定义:命题公式的定义如下:

  1. 每一个命题常元或命题变元都是命题公式。
  2. 如果 A A A 是命题公式,则 ¬ A \neg A ¬A 是命题公式。
  3. 如果 A A A B B B 是命题公式,则 A ∧ B A\land B AB, A ∨ B A\lor B AB, A → B A\rightarrow B AB, A ↔ B A\leftrightarrow B AB都是命题公式。
  4. 一个由命题常元或命题变元、连接词和括号组成的符号串是命题公式,当且仅当这个符号串是有限次应用上面的步骤得到的。
  • 一个含有命题变元的命题公式的真值是不确定的。
  • 只有当公式中的所有命题变元被指定代表特定的命题时,命题公式才成为命题,其真值才唯一确定。

1.3.2 命题公式的分类

定义: A A A 为一个命题公式

  1. A A A 在它的各种赋值下取值均为真,则称 A A A永真式重言式
  2. A A A 在它的各种赋值下取值均为假,则称 A A A矛盾式永假式
  3. 若至少存在一种赋值使 A A A 的真值为真,则称 A A A可满足式
  • 公式 A A A 永真,则 ¬ A \neg A ¬A 永假,反之亦然。
  • 公式 A A A 是可满足的,当且仅当 ¬ A \neg A ¬A 不是永真式。
  • 公式 A A A 不是可满足的,则一定是永假式。
  • 公式 A A A 不是永假式,则一定是可满足的。

1.4 等值演算

1.4.1 等价关系式

定义:如果 p → q p\to q pq 是永真式,则复合命题 p p p q q q 是逻辑等价的。用记号 p ≡ q p\equiv q pq 表示 p p p q q q 是逻辑等价的。

表1.4.1 逻辑等价式
序号名称等价式
1恒等律(同一律) p ∧ T ≡ p p\land T\equiv p pTp
p ∨ F ≡ p p\lor F\equiv p pFp
2支配律(零元律) p ∧ F ≡ F p\land F\equiv F pFF
p ∨ T ≡ T p\lor T\equiv T pTT
3双重否定律 ¬ ( ¬ p ) ≡ p \neg (\neg p)\equiv p ¬(¬p)p
4幂等律(等幂律) p ∧ p ≡ p p\land p\equiv p ppp
p ∨ p ≡ p p\lor p\equiv p ppp
5交换律 p ∧ q ≡ q ∧ p p\land q\equiv q\land p pqqp
p ∨ q ≡ q ∨ p p\lor q\equiv q\lor p pqqp
6结合律 ( p ∨ q ) ∨ r ≡ p ∨ ( q ∨ r ) (p\lor q)\lor r\equiv p\lor (q\lor r) (pq)rp(qr)
( p ∧ q ) ∧ r ≡ p ∧ ( q ∧ r ) (p\land q)\land r\equiv p\land (q\land r) (pq)rp(qr)
7分配律 p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r ) p\lor (q\land r)\equiv (p\lor q)\land (p\lor r) p(qr)(pq)(pr)
p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ) p\land (q\lor r)\equiv (p\land q)\lor (p\land r) p(qr)(pq)(pr)
8德摩根律 ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q \neg (p\land q)\equiv \neg p\lor \neg q ¬(pq)¬p¬q
¬ ( p ∨ q ) ≡ ¬ p ∧ ¬ q \neg (p\lor q)\equiv \neg p\land \neg q ¬(pq)¬p¬q
9吸收律 p ∧ ( p ∨ q ) ≡ p p\land (p\lor q)\equiv p p(pq)p
p ∨ ( p ∧ q ) ≡ p p\lor (p\land q)\equiv p p(pq)p
10否定律 p ∨ ¬ p ≡ T p\lor \neg p\equiv T p¬pT(排中律)
p ∧ ¬ p ≡ F p\land \neg p\equiv F p¬pF(矛盾律)

表1.4.2 条件命题的逻辑等价式
序号等价式
1 p → q ≡ ¬ p ∨ q p\to q\equiv \neg p\lor q pq¬pq蕴含等值式
2 p → q ≡ ¬ q → ¬ p p\to q\equiv \neg q\to \neg p pq¬q¬p假言易位
3 p ∨ q ≡ ¬ p → q p\lor q\equiv \neg p\to q pq¬pq
4 p ∧ q ≡ ¬ ( p → ¬ q ) p\land q\equiv \neg(p\to \neg q) pq¬(p¬q)
5 ¬ ( p → q ) ≡ p ∧ ¬ q \neg(p\to q)\equiv p\land \neg q ¬(pq)p¬q
6 ( p → q ) ∧ ( p → r ) ≡ p → ( q ∧ r ) (p\to q)\land (p\to r)\equiv p\to (q\land r) (pq)(pr)p(qr)
7 ( p → q ) ∨ ( p → r ) ≡ p → ( q ∨ r ) (p\to q)\lor (p\to r)\equiv p\to (q\lor r) (pq)(pr)p(qr)
8 ( p → r ) ∧ ( q → r ) ≡ ( p ∨ q ) → r (p\to r)\land (q\to r)\equiv (p\lor q)\to r (pr)(qr)(pq)r
9 ( p → r ) ∨ ( q → r ) ≡ ( p ∧ q ) → r (p\to r)\lor (q\to r)\equiv (p\land q)\to r (pr)(qr)(pq)r
10 ( p → q ) ∧ ( p → ¬ q ) ≡ ¬ p (p\to q)\land (p\to \neg q)\equiv \neg p (pq)(p¬q)¬p归谬论

表1.4.3 双向条件命题的逻辑等价式
序号等价式
1 p ↔ q ≡ ( p → q ) ∧ ( q → p ) p\leftrightarrow q\equiv (p\to q)\land (q\to p) pq(pq)(qp)等价等值式
2 p ↔ q ≡ ¬ p ↔ ¬ q p\leftrightarrow q\equiv \neg p\leftrightarrow \neg q pq¬p¬q等价否定等值式
3 p ↔ q ≡ ( p ∧ q ) ∨ ( ¬ p ∧ ¬ q ) p\leftrightarrow q\equiv (p\land q)\lor (\neg p\land \neg q) pq(pq)(¬p¬q)
4 ¬ ( p ↔ q ) ≡ p ↔ ¬ q \neg (p\leftrightarrow q)\equiv p\leftrightarrow \neg q ¬(pq)p¬q

1.4.2 等价运算

置换规则:若公式 G G G 中的一部分 A A A (包含 G G G 中几个连续的符号)是公式,称 A A A G G G 的子公式;用与 A A A 逻辑等价的公式 B B B 置换 A A A 不改变公式 G G G 的真值。

利用已知的等价关系式,将其中的子公式用和它等价的公式置换,可以推出其它的一些等价关系式,这一过程称为命题的等价运算。利用命题的等价运算,可以:

  • 判断两个命题是否等价
  • 判断命题公式的类型
  • 命题公式的化简
  • ……

1.5 范式

在这里插入图片描述

1.5.1 析取范式与合取范式

析取范式:一个命题公式具有形式 A 1 ∨ A 2 ∨ . . . . ∨ A n ( n ≥ 1 ) A_1\lor A_2\lor ....\lor A_n (n\ge 1) A1A2....An(n1),其中 A 1 , A 2 , . . . . , A n A_1, A_2, ...., A_n A1,A2,....,An都是由命题变元或其否定所组成的合取式,则称该命题公式为析取范式。

合取范式:一个命题公式具有形式 A 1 ∧ A 2 ∧ . . . . ∧ A n ( n ≥ 1 ) A_1\land A_2\land ....\land A_n (n\ge 1) A1A2....An(n1),其中 A 1 , A 2 , . . . . , A n A_1, A_2, ...., A_n A1,A2,....,An都是由命题变元或其否定所组成的析取式,则称该命题公式为合取范式。

  • 【例】 p ∨ ( p ∧ ¬ q ∧ ¬ r ) ∨ ( ¬ p ∧ q ) ∨ ¬ q p\lor (p\land \neg q\land \neg r)\lor (\neg p\land q)\lor \neg q p(p¬q¬r)(¬pq)¬q是析取范式。
  • 【例】 ( p ∨ ¬ q ∨ ¬ r ) ∧ ( ¬ p ∨ q ) ∧ ¬ q (p\lor \neg q\lor \neg r)\land(\neg p\lor q)\land \neg q (p¬q¬r)(¬pq)¬q是合取范式。

范式存在定理:任何一个命题公式都存在着与之等值的析取范式与合取范式。

1.5.2 主析取范式与主合取范式

极小项:含有n个命题变元的合取式中,若每个命题变元与其否定不同时出现,而二者之一必出现且仅出现一次,这样的合取式成为极小项。

极大项:含有n个命题变元的析取式中,若每个命题变元与其否定不同时出现,而二者之一必出现且仅出现一次,这样的析取式成为极大项。

  1. 由n个命题变元产生的不同的极大项和极小项的个数均为 2 n 2^n 2n 个。
  2. 每个极小项在它的 2 n 2^n 2n 个赋值中只有一个成真赋值。
  3. 每个极大项在它的 2 n 2^n 2n 个赋值中只有一个成假赋值。

一般地,n个命题变元形成的极小项可表示为: m 0 , m 1 , . . . m 2 n − 1 m_0,m_1,...m_{2^n-1} m0,m1,...m2n1;n个命题变元形成的极大项可表示为: M 1 , M 2 , . . . M 2 n − 1 M_1,M_2,...M_{2^n-1} M1,M2,...M2n1

主析取范式:如果含有n个命题变元的命题公式的析取范式的每个合取式全是极小项,则称该析取范式为主析取范式。

主合取范式:如果含有n个命题变元的命题公式的合取范式的每个析取式全是极大项,则称该合取范式为主合取范式。

定理:任何命题公式的主析取范式与主合取范式都是存在的,并且唯一。

1.5.3 主析(合)取范式的用途

  • 判断命题公式是否等价
  • 求公式的成真赋值和成假赋值
  • 判断公式的类型
  1. A A A 为永真式当且仅当 A A A 的主析取范式含 2 n 2^n 2n个极小项
  2. A A A 为矛盾式当且仅当 A A A 的主析取范式不含任何极小项,记作0
  3. A A A 为可满足式当且仅当 A A A 的主析取范式中至少含一个极小项
  1. A A A 为矛盾式当且仅当 A A A 的主合取范式含 2 n 2^n 2n个极大项
  2. A A A 为永真式当且仅当 A A A 的主合取范式不含任何极大项,记作0
  3. A A A 为可满足式当且仅当 A A A 的主合取范式不是包含全部 2 n 2^n 2n 个极大项

1.6 推理定理

定义: A A A B B B 是两个命题公式,当且仅当命题 A → B A\to B AB是重言式(即 A → B ⇔ T A\to B\Leftrightarrow T ABT时),称从 A A A 可推出 B B B ,可以表示为 A ⇒ B A\Rightarrow B AB

一般地,推理的前提可以有多个,若 ( A 1 ∧ A 2 ∧ . . . ∧ A n ) → B (A_1\land A_2\land ...\land A_n)\to B (A1A2...An)B是重言式,则称由前提 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1A2...An可推出结论 B B B,可表示为 ( A 1 ∧ A 2 ∧ . . . ∧ A n ) ⇒ B (A_1\land A_2\land ...\land A_n)\Rightarrow B (A1A2...An)B

表1.6.1 推理定律
序号公式解释
1 p ∧ q ⇒ p p\land q\Rightarrow p pqp
p ∧ q ⇒ q p\land q\Rightarrow q pqq
化简
2 p ⇒ p ∨ q p\Rightarrow p\lor q ppq
q ⇒ p ∨ q q\Rightarrow p\lor q qpq
附加
3 p , p → q ⇒ q p,p\to q\Rightarrow q p,pqq假言推理
4 ¬ q , p → q ⇒ ¬ p \neg q,p\to q\Rightarrow \neg p ¬q,pq¬p拒取式
5 ¬ p , p ∨ q ⇒ q \neg p,p\lor q\Rightarrow q ¬p,pqq析取三段论
6 p , q ⇒ p ∧ q p,q\Rightarrow p\land q p,qpq合取
7 p → q , q → r ⇒ p → r p\to q,q\to r\Rightarrow p\to r pq,qrpr假言三段论
8 p ↔ q , q ↔ r ⇒ p ↔ r p\leftrightarrow q,q\leftrightarrow r\Rightarrow p\leftrightarrow r pq,qrpr等价三段论
9 p → q , r → s , p ∨ r ⇒ q ∨ s p\to q,r\to s,p\lor r\Rightarrow q\lor s pq,rs,prqs构造性二难
10 p ∨ q , ¬ p ∨ r ⇒ q ∨ r p\lor q,\neg p\lor r\Rightarrow q\lor r pq,¬prqr归结式

CP规则: H 1 , H 2 , . . . H m H_1,H_2,...H_m H1,H2,...Hm P P P 推出 Q Q Q,则 H 1 , H 2 , . . . , H m H_1,H_2,...,H_m H1,H2,...,Hm 推出 P → Q P\to Q PQ

1.7 推理证明方法

  1. 真值表法
  2. 等价演算法
  3. 演绎法
  4. 间接推演法(归谬法)
  5. 附加前提证明法
  6. 归结证明法
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 命令:pwd 输出:当前目录的绝对路径。 例如:如果当前你所在的目录是 /home/user/documents,那么输出就会是 /home/user/documents。 说明:pwd 是 print working directory 的缩写,意思是打印当前工作目录。它可以帮助你确定你目前所在的目录。 ### 回答2: 作为Linux Terminal,我很高兴为您提供服务。您的第一条命令是"pwd",它代表"print working directory",即打印当前工作目录。 当您输入"pwd"后,我会立即响应并显示当前所在的工作目录的绝对路径。这个路径可以帮助您确定您在文件系统中的位置。 例如,如果当前工作目录是"/home/user/Documents",那么我会输出该路径。在这种情况下,您将看到"/home/user/Documents"。 对于Linux Terminal而言,工作目录是您当前工作的文件夹。您可以通过使用"cd"命令切换到其他目录。如需了解更多关于"cd"命令的信息,请随时询问。 非常感谢您选择使用Linux Terminal。如果您有其他命令或疑问,请随时告诉我,我会尽力为您提供帮助。 ### 回答3: 你好!作为一个Linux终端,很高兴为您服务。您的第一条命令是"pwd",它表示"Print Working Directory",即打印当前工作目录的路径。 当您在终端上输入"pwd"命令后,我会立即执行。我会查找当前所在的目录,并将其完整路径打印出来,以便您了解您当前在哪个目录中工作。 例如,如果您当前的工作目录是"/home/user/Documents",那么当您输入"pwd"时,我会返回"/home/user/Documents"。 这是一条非常有用的命令,它可以帮助您确认您当前的位置,尤其是在使用相对路径或者进行文件操作时。根据您当前所在的目录,您可以更好地组织和管理您的文件和文件夹。 如果您需要进一步了解其他命令或者有其他问题,欢迎随时告诉我!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值