(一)R进制转换为十进制
- 各位数字与其权重相乘,积相加:
( 11111111.11 ) 2 = 1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 + 1 × 2 − 1 + 1 × 2 − 2 = ( 255.75 ) 10 (11111111.11)_2 =1×2^7+1×2^6+1×2^5+1×2^4+1×2^3+1×2^2+1×2^1+1×2^0+1×2^{-1}+1×2^{-2} =(255.75)_{10} (11111111.11)2=1×27+1×26+1×25+1×24+1×23+1×22+1×21+1×20+1×2−1+1×2−2=(255.75)10
(二)十进制整数转换为R进制
- “除以R取余”法。
-
所以 ( 68 ) 10 = ( 1000100 ) 2 (68)_{10} = (1000100)_2 (68)10=(1000100)2
(三)十进制小数转 R 进制小数
- “乘以R取整”法。
所以 ( 0.3125 ) 10 = ( 0.0101 ) 2 (0.3125)_{10} = (0.0101)_2 (0.3125)10=(0.0101)2
(四)二、八、十六进制的相互转换
-
1位八进制数相当于3位二进制数;
-
1位十六进制数相当于4位二进制数,例如:
(
1011010.10
)
2
=
(
001011010.100
)
2
=
(
132.4
)
8
(1011010.10)_2=(001011010.100)_2=(132.4)_8
(1011010.10)2=(001011010.100)2=(132.4)8
(
1011010.10
)
2
=
(
01011010.1000
)
2
=
(
5
A
.
8
)
16
(1011010.10)_2=(01011010.1000)_2=(5A.8)_{16}
(1011010.10)2=(01011010.1000)2=(5A.8)16
(
F
7
)
16
=
(
11110111
)
2
=
(
11110111
)
2
(F7)_{16}=(11110111)_2=(11110111)_2
(F7)16=(11110111)2=(11110111)2