[LeetCode]310. Minimum Height Trees

Description:

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3

return [1]

Example 2:

Given n = 6edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5

return [3, 4]

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

——————————————————————————————————————————————————

Solution:

题意:给定一组符合树特性的无向图,找出可以作为根的结点,使得整个树变成最小高度树。

思路:

1.【TLE】:暴力循环BFS算法,创建邻接矩阵,对每个顶点都使用BFS

class Solution {
public:
    vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
        vector<vector<int>> neighbour(n, vector<int>(0));
        vector<bool> isVisited(n, false);
        for (int i = 0; i < edges.size(); i++) {
            neighbour[edges[i].first].push_back(edges[i].second);
            neighbour[edges[i].second].push_back(edges[i].first);
        }
        int minHeight = INT_MAX;
        vector<int> minList;
        for (int i = 0; i < n; i++) {
            int tempHeight = 0;
            queue<int> q;
            q.push(i);
            while (!q.empty()) {
                int curSize = q.size();
                while(curSize--) {
                    int cur = q.front();
                    q.pop();
                    isVisited[cur] = true;
                    for (int j = 0; j < neighbour[cur].size(); j++)
                        if (!isVisited[neighbour[cur][j]])
                            q.push(neighbour[cur][j]);
                }
                tempHeight++;
            }
            
            if (tempHeight < minHeight) {
                minHeight = tempHeight;
                vector<int> temp(1, i);
                minList = temp;
            } else if (tempHeight == minHeight) {
                minList.push_back(i);
            }
            
            for (int j = 0; j < n; j++)
                isVisited[j] = false;
        }
        return minList;
    }
};



2.【AC】:剪枝+BFS算法,创建邻接链表,每次循环找到叶子结点,并在连接叶子结点的父亲节点的邻接表中删除该叶子结点,同时判断当前节点是否是叶子结点,若是则加入叶子数组中,若不是则跳过,直到找剩1个或2个结点,叶子数组不再包含结点退出循环。在这里我们不需要进行环检查或其他异常情况,因为题目给定的是满足树特性的无向图。

class Solution {
public:
    vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
        // initialization
        vector<set<int>> neighbour(n);
        vector<int> leaves;
        for (int i = 0; i < edges.size(); i++) {
            neighbour[edges[i].first].insert(edges[i].second);
            neighbour[edges[i].second].insert(edges[i].first);
        }
        
        // corner case
        if (n == 1) {
            leaves.push_back(0);
            return leaves;
        }
        
        // find leaves
        for (int i = 0; i < n; i++)
            if (neighbour[i].size() == 1)
                leaves.push_back(i);
        
        // BFS
        while (true) {
            vector<int> nextLeaves;
            for (int i = 0; i < leaves.size(); i++) {
                if (neighbour[leaves[i]].empty())
                    continue;
                set<int>::iterator neigh = neighbour[leaves[i]].begin();
                neighbour[*neigh].erase(leaves[i]);
                if (neighbour[*neigh].size() == 1)
                    nextLeaves.push_back(*neigh);
            }
            if (nextLeaves.size() == 0)
                return leaves;
            leaves = nextLeaves;
        }
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值