Description:
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1:
Given n = 4
, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6
, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
——————————————————————————————————————————————————Solution:
题意:给定一组符合树特性的无向图,找出可以作为根的结点,使得整个树变成最小高度树。
思路:
1.【TLE】:暴力循环BFS算法,创建邻接矩阵,对每个顶点都使用BFS
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
vector<vector<int>> neighbour(n, vector<int>(0));
vector<bool> isVisited(n, false);
for (int i = 0; i < edges.size(); i++) {
neighbour[edges[i].first].push_back(edges[i].second);
neighbour[edges[i].second].push_back(edges[i].first);
}
int minHeight = INT_MAX;
vector<int> minList;
for (int i = 0; i < n; i++) {
int tempHeight = 0;
queue<int> q;
q.push(i);
while (!q.empty()) {
int curSize = q.size();
while(curSize--) {
int cur = q.front();
q.pop();
isVisited[cur] = true;
for (int j = 0; j < neighbour[cur].size(); j++)
if (!isVisited[neighbour[cur][j]])
q.push(neighbour[cur][j]);
}
tempHeight++;
}
if (tempHeight < minHeight) {
minHeight = tempHeight;
vector<int> temp(1, i);
minList = temp;
} else if (tempHeight == minHeight) {
minList.push_back(i);
}
for (int j = 0; j < n; j++)
isVisited[j] = false;
}
return minList;
}
};
2.【AC】:剪枝+BFS算法,创建邻接链表,每次循环找到叶子结点,并在连接叶子结点的父亲节点的邻接表中删除该叶子结点,同时判断当前节点是否是叶子结点,若是则加入叶子数组中,若不是则跳过,直到找剩1个或2个结点,叶子数组不再包含结点退出循环。在这里我们不需要进行环检查或其他异常情况,因为题目给定的是满足树特性的无向图。
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
// initialization
vector<set<int>> neighbour(n);
vector<int> leaves;
for (int i = 0; i < edges.size(); i++) {
neighbour[edges[i].first].insert(edges[i].second);
neighbour[edges[i].second].insert(edges[i].first);
}
// corner case
if (n == 1) {
leaves.push_back(0);
return leaves;
}
// find leaves
for (int i = 0; i < n; i++)
if (neighbour[i].size() == 1)
leaves.push_back(i);
// BFS
while (true) {
vector<int> nextLeaves;
for (int i = 0; i < leaves.size(); i++) {
if (neighbour[leaves[i]].empty())
continue;
set<int>::iterator neigh = neighbour[leaves[i]].begin();
neighbour[*neigh].erase(leaves[i]);
if (neighbour[*neigh].size() == 1)
nextLeaves.push_back(*neigh);
}
if (nextLeaves.size() == 0)
return leaves;
leaves = nextLeaves;
}
}
};