【视觉目标跟踪】
文章平均质量分 83
哈哈哈哈嘿嘿嘿
这个作者很懒,什么都没留下…
展开
-
A Survey of Appearance Models in Visual Object Tracking 阅读笔记(二)
4. STATISTICAL MODELING FOR TRACKING-BY-DETECTION 根据建模机制,统计建模被分为三类:产生式、判别式、混合式。产生式外观模型主要考虑怎样准确地匹配目标类型的数据。然而,在实际中是很难去验证特定模型的正确性的。除此之外,局部最佳总是通过参数估计法(最大期望算法EM)来获得。通过引入在线更新机制,它们在忽略背景影响的同时,逐步学习前景目标区域信息的翻译 2017-04-30 16:39:07 · 974 阅读 · 0 评论 -
多目标跟踪综述:Multiple Object Tracking: A Literature Review
本文的主要贡献点如下四条:1)多目标跟踪系统的关键方向,包括公式(formulation),分类(categorization),关键原则(key principles),以及测评(evaluation);2)根据现有技术所属的不同方向来进行讨论,再将每个方向的方法划分为成组,然后对组内方法的原则、优缺点进行讨论;3)检验现有公开的实验并且总结在主流数据集上的实验结果,再进行量化地对比,与此同时指出分析中发现的几个有趣的问题;4)提供在MOT研究中会遇到的问题的讨论,以及可能在以后的工作中会出现的潜在可研究翻译 2020-05-14 10:43:25 · 80043 阅读 · 6 评论 -
多目标跟踪竞赛结果摘要:Multiple Object Tracking Challenge 2017 Results
MOT17第一名:A Novel Multi-Detector Fusion Framework for Multi-Object Tracking第二名:A multi-cut formulation for joint segmentation and tracking of multiple objects速度最快: High-Speed Tracking-by-Detection Without Using Image Information原创 2017-11-30 16:24:34 · 8286 阅读 · 2 评论 -
ICCV 2015 Learning to Track: Online Multi-Object Tracking by Decision Making 阅读笔记
本文将在线MOT问题看成了Markov Decision Processes中的决策问题,将一个目标的一生(从出现到消失)建模成MDP,将数据关联中的学习相似性函数看作是MDP中的学习policy,然后在增强型学习的方式下,policy的学习就接近于数据关联中offline学习和online学习的共同优点。另外,本文还将目标的出现和消失看作是MDP中的状态转移,然后使用现有的单目标跟踪方法来处理这类问题。原创 2017-12-16 13:59:43 · 1093 阅读 · 0 评论 -
CVPR 2017 目标跟踪相关论文
CVPR 2017 目标跟踪相关论文——知乎上 YaqiLYU 的回答【1】C-COT算法升级,从模型大小、训练集大小和模型更新三方面优化了速度和性能ECO: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. "ECO: Efficient Convolution Operators for原创 2017-08-17 10:27:27 · 1543 阅读 · 0 评论 -
ICCV 2017 Tracking The Untrackable:Learning to Track Multiple Cues with Long-Term Dependencies 阅读笔记
论文网址:https://arxiv.org/abs/1701.01909预备知识RNNCNNLSTMMDP:ICCV 2015 Learning to Track: Online Multi-Object Tracking by Decision Making 阅读笔记摘要本文提出一种对长时间存在的多线索依赖关系进行编码的在线方法。其中,为了解原创 2018-01-26 16:36:06 · 2598 阅读 · 2 评论 -
IEEE 2016 Online Multiple Object Tracking with the Hierarchically Adopted GM-PHD Filter... 阅读笔记
预备知识GM-PHD摘要为了解决基于tracking by detection框架的算法容易被错检、漏检影响的问题,本文提出了一个基于tracking by detection框架的在线多目标跟踪算法。对于错检而言,本文使用了混合高斯概率假设密度(GM-PHD)滤波器,它对存在噪声干扰(noisy and random data processing)的目标观测有一定的鲁棒性。对于漏检而言,本文设...原创 2018-02-09 19:12:02 · 1074 阅读 · 0 评论 -
ECCV 2016 Online multi-target tracking with strong and weak detections 阅读笔记
论文主页:http://www.eecs.qmul.ac.uk/~andrea/eamtt.html预备知识PHD-PF(Probability Hypothesis Density Particle Filter)摘要本文在概率假设密度粒子滤波框架中,设计了一个能同时利用高置信度和低置信度目标检测的在线多目标跟踪跟踪器。高置信度目标检测用于传播标签和目标初始化,低置信度目标检测只用来支持标签传播...原创 2018-02-08 14:32:30 · 956 阅读 · 0 评论 -
在Matlab下使用指标评估代码对多目标跟踪结果进行评测
多目标跟踪方面,已经读了不少论文,跑过部分开源代码,最近开始也着手实践,首先将指标评估这方面功夫做了下,虽然已有开源代码和作者对代码使用方法的介绍,但还是顺便记录下步骤方便日后工作。步骤1:下载指标评估代码首先在MOTChallenge上可以浏览并且下载历年的训练和测试图像序列,根据需要下载,每年的总文件大小5g左右。主要是包括了图像本身,每一种图像序列就有成百上千帧图像,不同大小的都有,所以整个...原创 2018-03-08 16:10:23 · 7909 阅读 · 15 评论 -
CVPR workshop 2018 Joint detection and online multi-object tracking 阅读笔记
【论文链接】预备知识SSD:Single Shot Multibox DetectionRNN:Recurrent Neural Networkperceptron:感知器摘要大多数多目标跟踪方法都依赖于目标检测,用以初始化并更新跟踪集。跟踪和检测常常被独立成两个不相关的模块,然而事实上它们可以互惠互利,例如:跟踪中使用的相似性模型可以重用在检测器中计算得到的表观特征,检测器可以使用过去的目标信息...原创 2018-06-27 12:24:29 · 2021 阅读 · 1 评论 -
IEEE 2017 STAM16 阅读笔记
论文链接:https://arxiv.org/pdf/1708.02843.pdf 摘要本文设计了一个基于CNN架构的在线MOT方法。该框架利用了单目标跟踪的优点:能在下一帧中适应外观模型并搜索目标。通常在MOT中使用单目标跟踪子会遇到计算效率低下、因遮挡产生漂移等问题。本文通过对每个目标共享特征并利用ROI Pooling获得独立特征来提升计算效率。一些在线学习针对目标的CNN层也被...原创 2018-08-30 09:41:33 · 508 阅读 · 0 评论 -
CVPR 2017 Enhancing Detection Model for Multiple Hypothesis Tracking 阅读笔记
近几年Tracking-by-detection逐渐成为目标跟踪中常用的方法之一。但由于使用这个框架得到的目标检测结果是以点的形式传输的,导致特别是在拥挤人群场景中数据关联有歧义。为了解决这个问题,本文结合多假设跟踪方法,提出一种新型增强目标检测模型,包括检测目标-场景分析和检测目标-检测目标分析;前者利用密集置信度检测以及处理错误轨迹的方法对场景建模,后者计算每个检测目标间的关系并且改善对在拥挤场景中目标假设的邻近原创 2017-12-03 21:35:36 · 1709 阅读 · 0 评论 -
Matlab多目标跟踪示例(一):Motion-Based Multiple Object Tracking
简单来说,基于动态的多目标跟踪主要分为两步:①在每帧中检测出移动的目标②将检测到的目标与之前正在跟踪的同一个目标关联起来原创 2017-11-20 21:30:55 · 28962 阅读 · 37 评论 -
CVPR 2017 Multiple People Tracking by Lifted Multicut and Person Re-identification 阅读笔记
摘要:在本文中,作者提出一种基于图的新理论,可以串联、聚类不同时间出现的相同目标,通过解决最小损耗lifted multicut问题。作者的模型在不改变原来的可行解集的同时,将一个图的多个相距较远但是又相似的顶点连接起来,如此泛化了前人的工作,使得我们可以奖励那些以不引入不可行解的方式对同一目标进行相似性外观检测的轨迹。为了高效匹配较远距离的假设,作者还为目标重识别提出了新的深度结构,该结构将从深度网络提取出的全局表示和用state-of-the-art姿态估计模型得到的身体姿态层连接起来。原创 2017-12-06 11:46:12 · 3402 阅读 · 2 评论 -
A Survey of Appearance Models in Visual Object Tracking 阅读笔记(三)
5. BENCHMARK RESOURCES FOR VISUAL OBJECT TRACKING 为了评价不同种跟踪算法的效果,需要同样的测试视频数据集,真值,和需要比较算法的实现。Table VI列举了当前可获得的公开主要资源。另一个重要的问题是如何定性和定量地评价跟踪算法。通常, 定性评价是基于人们直观的感受的。换句话说,如果计算的目标区域覆盖更多对的含有目标区域和少的没有目标像素,这个跟踪翻译 2017-04-30 20:25:24 · 637 阅读 · 0 评论 -
A Survey of Appearance Models in Visual Object Tracking 阅读笔记(一)
AUTHOR: XI LI, WEIMING HU, CHUNHUA SHEN, ZHONGFEI ZHANG, ANTHONY DICK, ANTON VAN DEN HENGEL翻译 2017-04-15 16:57:48 · 1489 阅读 · 0 评论 -
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 阅读笔记
原文地址转载 2017-06-23 16:14:44 · 437 阅读 · 0 评论 -
“基于颜色属性直方图的尺度目标跟踪算法研究”阅读笔记
这篇文章的创新点有三点:1)特征提取方面,将RGB颜色空间转换成CN颜色空间,一种只有11维却主要表示了自然界常用颜色的颜色空间。2)目标表征方面,通过贝叶斯公式提出了背景加权抑制目标直方图表征方法。3)尺度估计方面,对尺度连续变换、“小尺度游荡”两个问题加入了惩罚项,还提出了反向尺度一致性检查。原创 2017-10-09 16:03:32 · 2642 阅读 · 0 评论 -
ICCV 2015 Learning to Track: Online Multi-Object Tracking by Decision Making 代码配置问题及解决方法
a)问题1:MEX 找不到使用 -l 选项指定的库 'opencv_core'。MEX 查找具有以下名称之一的文件: opencv_core.lib libopencv_core.lib 请使用 -L 选项指定此库的路径。b)问题2:d:\matlab\extern\include\matrix.h(260) : error C4430: 缺少类型说明符 - 假定为 int。注意: C++ 不支持默认 intc)问题3:正在创建库 lk.lib 和对象 lk.exp lk.obj : error LNK原创 2017-11-16 18:05:19 · 2629 阅读 · 8 评论 -
ICCV 2015 Multiple Hypothesis Tracking Revisited 阅读笔记
本文回顾了经典的基于tracking-by-detection框架的多假设跟踪算法(MHT),而MHT之所以奏效,很大程度取决于它只维持了一小个潜在假设的列表,这有助于精确地进行目标检测。本文还证明了90年代的经典MHT算法在标准测试数据集上能与目前一流的方法媲美。为了更好地利用MHT来探索高阶信息,本文还为每个跟踪假设采用了一种在线训练外观模型的方法。通过最小正则二乘法框架,每个假设分支只需要一些额外的操作就可以高原创 2017-11-03 19:17:07 · 7876 阅读 · 3 评论 -
Matlab多目标跟踪示例(二):Tracking Pedestrians from a Moving Car
与上一篇Motion-Based Multiple Object Tracking的不同之处在于:a)将检测子从混合高斯模型换成了聚合通道特征(Aggregate Channel Feature,ACF)。b)增加了一个辅助数据文件pedScaleTable。c)更新tracking 和 detection前使用的损失函数不同,从预测跟踪框与检测跟踪框的“欧几里得距离”换成了“重叠率”。d)在将unassigned tracking删除时,增加了一个判断条件:当置信度没有达到阈值时,也会删除该跟踪框原创 2017-11-22 16:53:46 · 16765 阅读 · 16 评论 -
CVPR 2015 In Defense of Color-based Model-free Tracking 阅读笔记
这是15年CVPR的一篇paper,它使用的跟踪方法是**统计颜色特征**,最大的亮点是**distractor-aware tracking(DAT)**,即在跟踪过程中预先探测出与目标相似的干扰区域,与正确的目标区域结合表示(加权结合)。这样的做法能够有效降低传统颜色特征方法常出现的“漂移”现象。同时,在支持尺度变换的前提下仍然能有较高的FPS,在原文中就提到了该算法可供实时在线目标跟踪使用。原创 2017-10-10 21:26:38 · 2878 阅读 · 4 评论 -
多目标跟踪:Simple Online and Realtime Tracking with a Deep Association Metric 2017 (deep-sort)
这篇文章依然属于tracking-by-detection 类,其在匹配detections时使用的是传统的匈牙利算法。文章中需要注意的几点包括:在计算detections和tracks之间的匹配程度时,使用了融合的度量方式。包括卡尔曼滤波中预测位置和观测位置在马氏空间中的距离 和 bounding boxes之间表观特征的余弦距离。其中bounding box的表观特征是通过一个深度网络得到的128维的特征在匈牙利匹配detections和tracks时,使用的是级联匹配的方式。这里要注意的是转载 2017-12-20 21:03:56 · 12964 阅读 · 2 评论 -
AVSS 2018 Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive...阅读笔记
论文链接:https://arxiv.org/abs/1805.10916原创 2019-09-16 16:58:31 · 840 阅读 · 0 评论