原文链接:https://motchallenge.net/results/MOT17/
测评项目:
MOT17第一名:A Novel Multi-Detector Fusion Framework for Multi-Object Tracking
摘要:由于仅用一个检测子进行目标检测往往会忽略许多有用的图像信息,因此这篇文章致力于探究如何融合多个检测子进行目标检测。作者将目标跟踪看作是“带权图标记问题”,也就是“二进制规划”问题(BQP)。这类问题一般视为NP-hard问题,常采用估计法解决。而作者将基于Frank-Wolfe算法,提出一种新的解决方法。最终,这个跟踪算法可以使用来自不同帧、不同检测子检测得来的信息进行全局跟踪。例如当融合头部和全身检测时,可以重现被严重遮挡的人,从而降低错检率。
总结:融合了头部、身体两种目标检测算法,比单独目标检测的效果更好。并将多目标跟踪问题转化为二次规划问题,然后用Frank-Wolfe算法解决。关于BQP的解决算法优化,作者改善了以下方面:(i)完整并高效地计算最佳步长,减少了时间开销(ii)将目标函数最小化重新生成,得到了更好的离散结果(iii)证明了作者的分层架构改进了一个可行解决方案,往往接近最优而且快速和易于集成。
MOT17第二名: A multi-cut formulation for joint segmentation and tracking of multiple objects
摘要:利用动态轨迹分段得来的low-level信息,和多目标检测跟踪得来的high-level信息,这样联合使用可以充分利用他们各自的优点,将问题转化为求解最优连通域个数问题:根据low-level和high-level三种不同连接方式的边加权求和,得到多切面联通图的最小损失解法。
总结:Motion segmentation allows for precise local motion cues and correspondences that support robust multi-target tracking results with high recall. Object detection and tracking allows a more reliable grouping of motion trajectories on the same physical object.
MOT17第四名:ICCV 2015 Multiple Hypothesis Tracking Revisited 阅读笔记
MOT17第六名:CVPR2017 Enhancing Detection Model for Multiple Hypothesis Tracking 阅读笔记
MOT17速度最快: High-Speed Tracking-by-Detection Without Using Image Information
摘要:作者认为由于目标检测的研究近几年发展迅猛,这使得跟踪算子有更可靠的检测目标来源。因此目标跟踪所面临的低效率计算问题能通过将复杂的跟踪算法转化为简单的算法来解决。在这篇文章中将介绍跟踪算法的主要流程,然后使用不同的检测算法,将得到的结果进行对比分析。
总结:这篇文章重点关注多目标跟踪中的数据关联步骤,并且在这步中完全抛弃使用图像信息,只对通过目标检测得来的数据进行IOU、置信度和时间等阈值处理(Algorithm 1中可见),以达到超高的速度。但是需要注意的是在使用不同detectors时都需要重新调整上述阈值以适应当前detectors的特性(比如EB算法多detections,RCNN高置信度等等)。