你好!
我虽然从事图像处理研究,但做的东西比较杂,也不是很深入。只能给你一些粗浅的建议。
我感觉图像处理现在的发展有两个层次,一个是算法研究,需要较多的数学基础,如偏微分方程(PDE)、各种空间变换(小波、曲波、剪切波等)。这些领域研究文献特别多,但要想出点新东西确实比较难。如果能深入研究一下,写出来的论文有一定理论深度,估计比较容易被录用。
另一个层次就是从横向拓展,找新的应用,也别的技术相结合,关键是找到研究内容,算法上只是将现有理论应用。最常见的与模式识别算法相结合,如人脸检测、行人检测、视频中运动检测,等等。只有点子新,文章应该也比较容易录用。
王老师:
你好,首先感谢你在繁忙的工作和学习中抽出时间来阅读我的邮件。我是云
南一所地方院校的教师,最近我在学习数字图像处理,看了冈萨雷斯的两本教材
,知道图像增强、恢复、压缩、编码、分割等基本概念,但觉得很多详细的内容
其实没看太懂。也不知道要做图像处理方面的研究需要学哪些东西。看了网上的
一些讨论说现在图像处理方面的理论研究已经很难做出新的东西,不知王老师怎
么看,现在做图像处理哪个方面比较容易发文章。我最近要选在职硕士的毕业论
文题目,不知道从何入手,希望得到王老师的一些建议。在此不甚感激!
我是从《中国图象图形学报》上看到王老师的文章和邮箱的,于是冒昧的
给你发了邮件,打扰之处还请见谅。
图像处理是个老问题,也是个难问题。图像处理方面的研究以及做了很多很多年了,看现在很多问题都没解决。 举个简单的例子,比如去噪,到现在为止,都还没有完全研究透。但要提出更好的方案,也比较难。还有比如自然图像的模型问题,至少到现在为止还没有一个比较好的模型能够描述大量的自然图像。有的模型也是对一些情况适用。 因此,做图像处理还是有得做的,可也不是那么容易做的,就像上面的老师的回复,需要比较深的理论基础,尤其是数学,信号处理和统计方面的
研究的内容和研究的人员都比较多,不管研究什么,只要能提出自己的见解,或者在别人的基础上进行改进,应该都是可以的
图像分辨率增强,比如一个小尺寸图片放大数倍又要保证放大的效果,具体应用如人脸分辨率增强,应用于监控视频人脸检测等环境. 这也是一位老师给我的意见,我查了下相关分辨率增强的的文献,这方面中文的还挺少.有对这一方面了解的虫子来聊聊.
图像分辨率增强,比如一个小尺寸图片放大数倍又要保证放大的效果,具体应用如人脸分辨率增强,应用于监控视频人脸检测等环境. 这也是一位老师给我的意见,我查了下相关分辨率增强的的文献,这方面中文的还挺少.有 ... 好像做多分辨率图像增强的也有不少吧
创新的东西真的不是太容易做的。本人感觉把图像处理的理论和其他学科相结合才是能有最大发挥的途径。
我觉得这位老师的回信还是很中肯的,基本上多媒体领域(包括视频、音频等)都是这两条思路。 个人感觉: 如果你是学数学出身、对媒体本身感觉不明显,可以沿着第一条思路走,毕竟大部分学计算机出身的人理论功底都不如你,套用一些数学上常用的变换或优化就可能就会让方法看起来很新颖; 如果你是学计算机出身、数学功底一般的话,可以沿着第二条思路走,只要能找到一个有趣的应用,里面用的方法不算太土,就是很不错的文章了。 当然,如果你两方面都很强,就可以随心所欲了,横着走都没事。 PS:图形图象学报也许是国内在图像处理方面最好的期刊了,但如果想做研究,还是多关注一下知名国际会议,例如MM,ICIP……文章内容要新很多。
我觉得这位老师的回信还是很中肯的,基本上多媒体领域(包括视频、音频等)都是这两条思路。 个人感觉: 如果你是学数学出身、对媒体本身感觉不明显,可以沿着第一条思路走,毕竟大部分学计算机出身的人理论功底 ... 感谢谢你的回复。我是没法横着走了。数学不好,计算机也不行。郁闷得很,搞科研太难,很不适合我呀。呵呵
除了极少数人外,大部分人在本科刚毕业的时候,这两方面都不会太突出。只要你在同年级中还算可以,那么就不会有太大问题。 如果两个方面都比较欠缺,但又很想搞研究的话,建议先趁年轻补数学。虽然开始发文章会慢一些,但后面看文章、写文章都会快很多,少走很多弯路,磨刀不误砍柴工。 如果不是很想搞科研,就去工作吧。其实工作蛮好的,起码挣钱多,做到后来也不是很辛苦。
哎,我们做水印的更难啊
我也是做算法的,比较难做啊,而且需要静下心来看好多东西,嗨嗨。。只能努力了啊。。 中国图象图形学报很不错。但不是EI核心。
中国图象图形学报很不错。但不是EI核心。 能投到中国图象图形学报我觉得就很厉害了,因为我真的实在是菜鸟,虽然每天都在学习了,但还是什么都不懂,尝试写了第一篇论文投了一底层次的期刊,被要求改了下格式后被录用了,结果版面费1700元,嘿死人,算了,不交了.以后真能投到核心的1700就1700吧.
图像分辨率增强,比如一个小尺寸图片放大数倍又要保证放大的效果,具体应用如人脸分辨率增强,应用于监控视频人脸检测等环境. 这也是一位老师给我的意见,我查了下相关分辨率增强的的文献,这方面中文的还挺少.有 ... 这叫超分辨率重建,是一个不错的研究方向。
这叫超分辨率重建,是一个不错的研究方向。 非常感谢你的提示!之前我用"分辨率增强"搜索文章,找到的很少。经你提示后,发现这方面的文献还真是不少.
这叫超分辨率重建,是一个不错的研究方向。 这个研究方向已经有好多年了吧,记得04年一次学术交流会上很多人在做这个啊
额,我刚刚学习数字图像处理这门课程,看到你们所讲的好有感触啊
图像处理现在确实很难进一步发展,同样说明需要发展;自身理论创新不易,故国人大部分做应用。我认为图像处理瓶颈在于不像一维信号有FFT、Wavelet等的分解重构工具,图像也需要分解重构,图像处理需要自己的工具。但是现在往往图像处理仍使用一维信号分析方法,这接近自然本身的面目吗?希望大家能用图像的观点来思考图像,幸运的是已经有些科学家这样做了,比如Beamlet、Ridgelet等。
图像处理现在确实很难进一步发展,同样说明需要发展;自身理论创新不易,故国人大部分做应用。我认为图像处理瓶颈在于不像一维信号有FFT、Wavelet等的分解重构工具,图像也需要分解重构,图像处理需要自己的工具。 ... 呵呵,应该是只大牛
有一定道理!
图像处理现在确实很难进一步发展,同样说明需要发展;自身理论创新不易,故国人大部分做应用。我认为图像处理瓶颈在于不像一维信号有FFT、Wavelet等的分解重构工具,图像也需要分解重构,图像处理需要自己的工具。 ... |