微信的look-alike的启发

本文探讨微信的look-alike技术在解决推荐系统中马太效应和实时性问题上的应用。通过改进用户和种子表达,利用注意力机制优化用户相似度计算,实现更精准的内容推荐。该方法在保持实时性的同时,提升了推荐效果,尤其适用于用户同质性强的社交产品。
摘要由CSDN通过智能技术生成
前言

微信搞的look-alike很有意思哈,我们来看下,发现对我们做内容推荐还是很有启发的。

解决问题

1)马太效应
推荐系统里投放数据具有马太效应,长尾数据无法获得足够曝光得到用户反馈,头部数据则越来越得到更多的曝光。导致穷者愈穷,富者愈富。长此以往,会影响整个推荐的效果。这跟推荐的方式有关系,现有推荐强依赖于用户行为,无行为或者少行为的内容无法得到更可靠地预测,也就无法得到更大概率地曝光。

2) 实时和准确
传统的look-alike是个很好地解决方案,但是无法兼顾实时性和有效性。实时look-alike依赖于“种子=>用户”的计算,受限于用户表达能力和种子的表达能力,则会导致准确率下降。

怎么解决
基本思路

推荐系统里的任何内容,总会多多少少地积累一定的点击量,而这就提供了某种途径,可以根据这些点击用户找其相似的用户群体。与常规推荐方式不同的是,look-alike会基于种子用户预测,点击某内容的种子用户作为输入,而非内容特征做输入,来预测其相似用户群体,然后推送共点击内容。同时,调整look-alike学习模型,并优化用户表达,从而达到效率和效果兼顾。

具体做法

1)用户表达
用attention合并层来提高用户表达能力,能有效降低强特征的过拟合,并学到弱特征。通用的DNN的concate层,会强化强特征,弱化弱特征,不符合对用户所有特征的表达全面地要求。只有用户的表达维度足够充分,才能在用户找相似用户时,提供更精准地内容推荐。先借助类似YouTube的模型,来学习用户表达,但是嵌入了attention层。

每个用户有50次点击,正负样本比例1:10,以NCE的方式作负采样,根据频率排序,采样概率 P ( x i ) = l o g ( k + 1 ) − l o g ( k + 1 ) l o g ( D + 1 ) P(x_i)=\frac{log(k+1)-log(k+1)}{log(D+1)} P(xi)=log(D+1)log(k+1)log(k+1) k k k表示第 i i i个item的排序位置。最后soft-max加交叉熵优化模型参数。

2)种子的全局和局部
用global attention unit 来学习种子的全局特征;用local attention unit 来学习种子的局部表达,与目标用户个人相关的属性。

选择具有最新点击行为的 n n n用户作为种子用户,前面已经学到了用户表达 n × m n \times m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值