兴趣探测的模型化探索

这篇博客探讨了兴趣探测问题,提出将其建模为分布的分布或用户状态转移的中间action。作者讨论了Dirichlet分布和Beta分布在兴趣探测中的应用,以及在不同探测数据选择下的模型收敛性。此外,还提到了独立性假设、短期与长期估计的一致性等问题,并介绍了相关概率论背景知识。
摘要由CSDN通过智能技术生成

背景

最近跟阿力讨论了下兴趣探测的事情,启发了非常有意思的解决思路。在此简要整理下,没准以后扩展成统一的数学模型理论,还可以发篇小文章呢。

探测的关键问题和尝试思路

兴趣探测的核心问题

  • 探测对象:对什么样的用户探测
  • 探测资源:用什么资源探测
  • 探测手段:如何探测和时机

现在梳理出来的思路有两个:
一) 是将探测作为分布的分布来建模。
二) 是将探测作为用户状态转移的中间action来建模。
希望能够找到个大一统的数学理论支持,将探测作为其中的一个子场景应用验证。

在第一种思路下,思考几个问题:

  • 如何将Dirichlet分布衍生成现有的探测模型,或者是将现有探测模型抽象成Dirichlet分布【关系抽象==》具化外延】。
  • 证明在不同探测数据选择方式下,模型收敛性情况;即指出哪些条件约束下,探测模型是有效的,哪些情况下,探测模型是失效的。

假设现有探测模型:f(x, var) = ctr。其中x是样本特征,var是波动参数[trainable]。期望学到某个用户的探测置信度var,表示该用户是多大程度上需要探测。突然想到,如果是f(x, tag, var)= ctr,这样是不是直接将某个tag的探测置信度var也表达了。这里的模型,有好多个更细节的东西,比如为什么用ctr作为目标,而不是点击;var学习时用到的采样方式;模型训练时类似EM方式或者GAN网络的训练方法等,后续再补充。
怎么抽象成为地雷克雷分布呢?

潜在问题

  • 独立性假设条件的满足,不一定都能成立。
  • 短期估计与长期估计收敛性是否一致。做N次探测和做无限探测,对未来总收益的影响评估。

背景知识梳理

概率的分布

关键词:n重伯努利试验 二项分布 beta分布 多项式分布 Dirichlet分布 共轭分布
n重伯努利实验:在相同条件下,重复地相互独立地进行n次随机实验,实验结果只有发生 A A A和不发生 A ‾ \overline{A} A两种情况。
X X X表示其中发生 A A A的次数, X X X是一个随机变量,描述其分布律如下,在 n n n次实验中 A A A发生 k k k次的概率为 P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_{n}^k p^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk,称随机变量 X X X服从参数为 ( n , p ) (n,p) (n,p)二项分布,记为 X ∼ b ( n , p ) X \sim b(n,p) Xb(n,p)
二项式定理 ( p + q ) n = C n 0 p n q 0 + C n 1 p n − 1 q 1 + . . . + C n k p k q n − k + . . . + C n n p 0 q n = ∑ k = 0 n C n k p n − k q k , 其 中 C n k = n ! k ! ( n − k ) ! (p+q)^n=C_n^0 p^{n} q^0 + C_n^1 p^{n-1}q^1 + ... + C_n^k p^{k}q^{n-k}+ ... + C_n^np^0q^{n}=\sum_{k=0}^nC_{n}^kp^{n-k}q^k,其中C_n^k=\frac{n!}{k!(n-k)!} (p+q)n=Cn0pnq0+Cn1pn1q1+...+Cnkpkqnk+...+Cnnp0qn=k=0nCnkpnkqk,Cnk=k!(nk)!n!
二项分布的期望 E ( X ) = n p E(X)=np E(X)=np,期望 D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1p)。对二项分布,总是随着 k k k的增加,概率 P ( X = k ) P(X=k) P(X=k)呈现先增后降的特点。对 n n n趋向于无穷大时,二项分布变为正太分布【这个跟中心极限定理是一致的】。
(0~1)分布就是二项分布的n=1的特殊情况, P ( X = k ) = p k q 1 − k P(X=k)=p^kq^{1-k} P(X=k)=pkq1k

在二项分布里,概率 p p p是参数;而在Beta分布里,概率 p p p是随机变量;前者对发生事件的数量建模,后者对发生事件的概率建模。
B e t a ( α , β ) Beta(\alpha, \beta) Beta(α,β)分布是概率的概率分布
α \alpha α β \beta β是发生和不发生的数量,分别为不同值时,表示我们观察到的总体情况,这个时候我们认为不同比例背后,意味着发生概率也是不同的。比如棒球击中来猜测棒球手击中率的问题,多臂赌博机的最大收益问题。
来看下Beta分布,在不同 α \alpha α β \beta β下的事件发生的概率分布。

为什么我们执着于用Beta分布来描述概率的概率分布呢?用其他的分布也可以啊,因为Beta分布有很好的特性,在贝叶斯推理中,Beta分布与二项分布是共轭的。

发现没,如果共轭的话,后验概率分布 P ( θ ∣ X ) P(\theta|X) P(θX)可以跟先验概率分布 P ( θ ) = B e t a ( α , β ) P(\theta)=Beta(\alpha, \beta) P(θ)=Beta(α,β)是一致的,在新增实验x个发生事件和n-x个非发生事件之后的后验概率分布 P ( θ ∣ X ) = B e t a ( α + x , β + n − x ) P(\theta|X)=Beta(\alpha +x, \beta +n-x) P(θX)=Beta(α+x,β+nx)。多么漂亮的结果,压根不需要经过中间各种乱七八糟的计算了,直接可以根据先验概率计算后验概率。
补充
gamma函数: Γ ( x ) = ∫ 0 ∞ t x − 1 e − t d t Γ(x)=∫_0^∞ t^{x−1}e^{−t}dt Γ(x)=0tx1etdt;beta函数: B ( x , y ) = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 d t B(x,y)=∫_0^1t^{x−1}(1−t)^{y−1}dt B(x,y)=01tx1(1t)y1dt
beta分布: B e t a ( α , β ) = Γ ( α ) Γ ( β ) Γ ( α + β ) Beta(\alpha, \beta)=\frac{Γ(\alpha)Γ(\beta)}{Γ(\alpha+\beta)} Beta(α,β)=Γ(α+β)Γ(α)Γ(β)
beta分布的概率密度函数: B e t a ( x , α , β ) = 1 B ( α , β ) x α − 1 ( 1 − x ) β − 1 Beta(x, \alpha, \beta)= \frac{1}{B(α,β)} x^{α−1} (1−x)^{β−1} Beta(x,α,β)=B(α,β)1xα1(1x)β1

多项式分布,是二项分布的推广,事件有多种结果。把投硬币换成投骰子。
Dirichlet分布,是多项式分布的共轭分布;他们的关系可以类别 beta分布之于二项分布。

布参数估计

ML估计,MAP,贝叶斯估计,其他估计方法

本文到底讲了些啥呢?反正没有解决本文前面提出的三个核心问题。哈哈,纯属讨论 探测的方式方向。

在第一种思路下,可以使用多臂赌博机来做探测,就是Dirichlet分布,但是这种方式仅限于情况有限且只能够利用已有点击的信息,对展示是无感知的。如果是用f(x, target, var)的思路来处理,则会有效借助总体或者群体特征,在个人探测时,同时对展现也有较好地敏感性。
在第二种思路下,暂时还没尝试。
notice: 这两种方式都是在pair下的探测,并没有借助整屏信息,存在着整体规划的缺陷,另外的DPP会有更优地整体性。

Reference

参考:PRML-章节
参考:概率论与数理统计
参考:https://mp.weixin.qq.com/s/HxKZgFFxD6oLJigrd8scAw
参考:https://towardsdatascience.com/beta-distribution-intuition-examples-and-derivation-cf00f4db57af
参考:https://bookdown.org/probability/beta/beta-and-gamma.html#beta

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值