参考博客:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html
假设我想知道"BBCABCDAB ABCDABCDABDE"这个字符串里面能否找到"ABCDABD"
接下去我们用kmp算法完成任务:
(1). 首先字符串:"BBCABCDAB ABCDABCDABDE"的第一个字符和搜索词"ABCDABD"的第一个字符进行比较,
由于'A'和'B'不匹配,因此搜索词后移一位
(2).发现'B'和'A' 不匹配,因此搜索词后移一位
(3)就这样,直到字符串有一个字符和搜索词的第一个字符相同为止
(4)接着对搜索词第二个字符匹配,发现还是一样
(5)直到字符串有一个字符,与搜索词对应的字符不相同为止
此时最自然的反应是将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重新比一遍。
(6)KMP算法的想法是不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。
这这张表是这么产生的:
(7).
最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
所以就是 6 - 2 = 4,搜索词往后面移动4位
因为字符'A'与'C'不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
(8)移动以后,逐个比较发现'C'和'D'不匹配
于是移动位数 = 6 - 2 = 4
发现完全匹配,搜索完成。