优化与求解非线性方程组(单变量问题)

本文探讨了优化问题与非线性方程组的关系,通过一元函数示例展示了如何使用R中的nlm()和optim()函数求解极值。接着,介绍了二分法、牛顿法、Fisher得分法、切线法和不动点迭代法等数值求解方法,并提供了R代码示例。每种方法都有其特点和适用场景,如二分法简单但速度慢,牛顿法则快速但需要二阶导数。
摘要由CSDN通过智能技术生成

        求函数极值的问题通常被化简为求解导数为0的点的问题。所以优化问题通常与解非线性方程组联系起来。在前面写点估计中的mle时,我们介绍了R中求解方程极值的函数nlm(),optim().

         我们以一元函数f(x)=ln(x)/(1+x)为例求解函数的极值。

f<-function(x) -log(x)/(1+x)      #(1)
optimize(f,c(0,10)) #求解(0,10)上的最小值,对于一元函数区间的确定,我们通常可以画图来做初步判断


对于多元函数:

f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))#这里需要给出迭代的初值
optim(c(10,10),f)


由于nlm,optim,的默认迭代方法不同,得出的结果精度也会有区别。运行上面的代码,我们可以看到nlm给出的最小值点为(1,2),而optim给出的是(1.000348, 2.001812)。

 

我们也可以通过求解函数的导数为0的点求解函数的极值。还是以1式为例。运行下面的代码:

D(expression(log(x)/(1+x)),&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值