说明
No Measurement , No Improvement
这套并不是标准量化交易指标,一方面我对那套指标的确也不是很熟,另外我觉得可能自己琢磨一套会更实用一些。主要考虑以下几方面:
- 1 交易的数量
- 2 盈利特性:单均盈利率
- 3 交易持续周期
- 4 最大持有的股票数
- 5 输赢:赢率和真实赢率
- 6 盈亏比
- 7 最大回撤
总体上说:
- 我希望算法产生的交易够多,但不要太多,这样可以具有统计性,又不至于偏向高频;
- 交易持续周期会影响到资金的占用、利用率等;
- 最大持有的股票数一方面可以使整个组合表现出更好的稳定性,当然也会影响到资金占用;
- 从信号的产生机制上,一定会混杂很多白噪声,所以要分为赢率和真实赢率;
- 盈亏比则是考验算法的生存性;
- 最大回撤则是投资风险的度量。回撤在所难免,关键要看能不能接受,值不值得;
内容
通过信号机制产生候选交易,通过模型来识别优质的交易,通过策略来进行修正
假设有一种信号机制(买入和卖出),可以为股票生成若干候选交易,我们希望对这些候选交易进行评估:
- 1 可以根据信号筛选交易
- 2 可以根据股票进行筛选
- 3 可以根据交易期间进行筛选
1 候选交易
根据买入和卖出信号集,我们可以获得足够的候选交易hs300_df

2 根据信号集进行筛选
信号集有一个选择字段是signal_tuple(我隐藏了),第一步将关注的候选集根据信号拆分出来。其他可选的是股票列表和时间。
tem_df1 = process_filter_signal_df(hs300_df)
3 根据筛选后的信号集计算基本指标
随意选定一只股票,看起来还不错,一共466个候选订单,真实赢率29%,单均盈利率是7%,盈亏比为3.4。
some_code = '600010'
tem_df2 = tem_df1[tem_df1['code'] == some_code]
process_kpi001_base(tem_df2)
{
'total_orders': 466,
'win_rate': 0.4291845493562232,
'real_win_rate': 0.2918454935622318,
'win_v_loss': 3.4094531520791054,
'hold_stocks': 1,
'mean_margin': 0.07076018194400928}
Note: 候选订单并不是模拟交易的订单,可能会更多一些。候选订单的目的是尽量多的生成可能的交易,供模型学习。
4 期间表现
为了更直观的看到订单的实时表现,我们需要构造交易活动期间的所有数据:根据信号对的起始时间,通过merge全量分钟数据构造交易的活动(明细)数据
通过活动数据,我们可以观察:
- 1 每个订单的最大、最小涨跌以及最大回撤
- 2 若干个订单总的资金敞口和回撤
我们要计算两类数据:
- 1 交易在打开和平仓之间的明细数据,用来看资金敞口。
- 2 结合明细数据,在每笔订单的平仓点更新资本的数值,从而计算回撤
从单个的例子可以看到:
- 1 最大回撤比较高。主要原因是冲顶后,没有及时控制(虽然还是赚的)。
- 2 资金敞口很高。因为没有控制候选交易的数量,可以给每支股票一个cap。
- 3 赢单的亏损一般不会超过10%。这样可以设置止损。
- 4 输单的回撤事实上没有赢单大。因此回撤控制是用来确保更大的利益。
res_600010_dict ,detail_600010_dict= process_kpi002_performance_of_a_code(tem_df1,'600010')
res_600010_dict
{
'max_drawback': -0.3254396180829447,
'max_exposure': 112383526.72755373,
'median_hold_days': 27.0,
'median_order_drawback': -0.13348810214741724,
'median_margin': -0.00986446020488569,
'real_win_min_interest': count mean std min 25% 50% 75% \
real_win
0 330.0 -0.060642 0.044292 -0.179422 -0.088277 -0.054769 -0.020774
1 136.0 -0.033090 0.014999 -0.084479 -0.044288 -0.036120 -0.027810
max
real_win
0 -0.002000
1 0.006458 ,
'real_win_max_draw_back': count mean std min 25% 50% 75% \
real_win
0 330.0 -0.095822 0.058116 -0.195652 -0.133609 -0.094828 -0.037787
1 136.0 -0.288716 0.054608 -0.313901 -0.313901 -0.313901 -0.313901
max
real_win
0 0.000000
1 -0.171184 ,
'real_lose_max_interest': count mean std min 25% 50% 75% \
real_lose
0 434.0 0.286946 0.374751 -0.008085 0.009760 0.079744 0.870202
1 32.0 0.031577 0.027086 -0.002000 0.005677 0.029256 0.059415
max
real_lose
0 0.952228
1 0.084441 ,
'real_lose_draw_back': count mean std min 25% 50% 75% \
real_lose
0 434.0 -0.150239 0.108157 -0.313901 -0.313901 -0.130222 -0.057851
1 32.0 -0.177587 0.017701 -0.195652 -0.195652 -0.177778 -0.166667
max
real_lose
0 0.000000
1 -0.132231 }
将多只股票的结果混合
code_detail_dict_list = [detail_600010_dict,detail_600031_dict,detail_300677_dict]
res_dict1 = process_kpi003_merge_codes(code_detail_dict_list)
{
'median_hold_days': 13.0,
'median_order_drawback': -0.10698824984539267,
'median_margin': -0.00986446020488569,
'real_win_min_interest': count mean std min 25% 50% 75% \
real_win
0 583.0 -0.053453 0.044081 -0.200425 -0.076391 -0.043757 -0.017635
1 173.0 -0.035720 0.023631 -0.148880 -0.044288 -0.036120 -0.025843
max
real_win
0 -0.000747
1 0.006458 ,
'real_win_max_draw_back': count mean std min 25% 50% 75% \
real_win
0 583.0 -0.084104 0.05

本文探讨了一种非标准化量化交易指标NoMeasurement,NoImprovement,作者强调自定义指标的重要性,并详细阐述了交易数量、盈利率、交易周期等因素在策略中的作用。通过实例展示了如何筛选交易、计算基本KPI和期间表现,以衡量交易性能和风险控制。
最低0.47元/天 解锁文章
1785

被折叠的 条评论
为什么被折叠?



