说明
吸引定律,心理学名词,一般指人的心念(思想)总是与和其一致的现实相互吸引,或者说这是一种"心想事成"。
把注意力放到一个领域,最简单、最有效的做法是阅读和写作。前者可以让人看的更远,后者则能想的更深;前者有趣,能触发一些行动的开始;后者则保障行动得以实现。
内容
这次看的一本书大概是我很早以前买的,除开具体的实现手段(说实话我感觉out了),其他的经验和知识仍然可以参考。
书皮长这样
这是目录,我觉得老外写文章的特点是将的非常具体,从目录上,大致讲了以下几方面:
- 1 什么是量化,怎么搞
- 2 怎么开始(策略)
- 3 怎么回测(研究的评判)
- 4 实战第一步(开账户)
- 5 自动化/半自动化交易(规则引擎)
- 6 资金/规则管控(业务上的评估和管理)
总的来说,这还是比较全的
这里给出了量化的定义,以及一个区别方法。
最适合搞量化的人,嗯,金融、计算机技术和一些些存款
这些和我想的一致,易扩大,节省时间。
下面讲了如何产生一些可靠的信号集
给出了三个评判指标,最大回撤,以及回撤周期。
给出了个人量化交易的两个渠道
关于设备。我觉得这方面我还是很有优势的,因为职业和兴趣的原因,我在设备方面还是很有优势的。
当初的配置真的很低,我现在哪怕仅仅考虑核心的算网,也至少可以有30个CPU核的算力,还有2个GPU,算力还是很猛的。同时配置了若干高速的固态硬盘,每台主机至少是32G内存,最高128G内存。反正肯定是够用的。
这块我觉得使用规则引擎去做就对了。
规则引擎在交易是很有用的
风险管理是很现实的,如果不能满足风险管理的要求,那么业务是很难维持下去的。
关于这些,我还是比较认可反脆弱的精神,不要用杠杆。
隐马尔科夫是有用的,不展开说了
最后还论证了可以成功,我很喜欢这一点,哈哈
总结
- 1 我还是适合搞量化的(从几个要素上分析)
- 2 量化应该也是可以成功的
- 3 技术上用python明显是更好的选择(2010年那会还没有这个)
- 4 规则引擎搞自动化交易是最好的选择,我也可以实现这部分
- 5 我认为无杠杆交易是对的
- 6 夏普率、最大回撤和最大回撤周期这三个指标还是值得计算的
- 7 技术方面我觉得我的工具箱足够丰富和强大
- 8 基于现有的策略进行修改这个诀窍我觉得是对的
- 9 我还可以使用模型对效果进一步增强