Python 算法交易实验52 读后感《量化交易:如何建立自己的算法交易事业》

文章介绍了量化交易的概念,强调了规则引擎在自动化交易中的重要性,提到了Python作为现代量化交易的技术选择,以及风险管理的关键,如最大回撤和夏普率等指标。作者认为自身具备进行量化交易的优势,并支持无杠杆交易策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

吸引定律,心理学名词,一般指人的心念(思想)总是与和其一致的现实相互吸引,或者说这是一种"心想事成"。

把注意力放到一个领域,最简单、最有效的做法是阅读和写作。前者可以让人看的更远,后者则能想的更深;前者有趣,能触发一些行动的开始;后者则保障行动得以实现。

内容

这次看的一本书大概是我很早以前买的,除开具体的实现手段(说实话我感觉out了),其他的经验和知识仍然可以参考。

书皮长这样
在这里插入图片描述

这是目录,我觉得老外写文章的特点是将的非常具体,从目录上,大致讲了以下几方面:

  • 1 什么是量化,怎么搞
  • 2 怎么开始(策略)
  • 3 怎么回测(研究的评判)
  • 4 实战第一步(开账户)
  • 5 自动化/半自动化交易(规则引擎)
  • 6 资金/规则管控(业务上的评估和管理)

总的来说,这还是比较全的

在这里插入图片描述

在这里插入图片描述

这里给出了量化的定义,以及一个区别方法。
在这里插入图片描述

最适合搞量化的人,嗯,金融、计算机技术和一些些存款
在这里插入图片描述
这些和我想的一致,易扩大,节省时间。

在这里插入图片描述
下面讲了如何产生一些可靠的信号集
在这里插入图片描述
给出了三个评判指标,最大回撤,以及回撤周期。
在这里插入图片描述
给出了个人量化交易的两个渠道
在这里插入图片描述
关于设备。我觉得这方面我还是很有优势的,因为职业和兴趣的原因,我在设备方面还是很有优势的。

在这里插入图片描述
当初的配置真的很低,我现在哪怕仅仅考虑核心的算网,也至少可以有30个CPU核的算力,还有2个GPU,算力还是很猛的。同时配置了若干高速的固态硬盘,每台主机至少是32G内存,最高128G内存。反正肯定是够用的。
在这里插入图片描述
这块我觉得使用规则引擎去做就对了。
在这里插入图片描述
规则引擎在交易是很有用的
在这里插入图片描述

风险管理是很现实的,如果不能满足风险管理的要求,那么业务是很难维持下去的。
在这里插入图片描述
关于这些,我还是比较认可反脆弱的精神,不要用杠杆。
在这里插入图片描述
隐马尔科夫是有用的,不展开说了
在这里插入图片描述
最后还论证了可以成功,我很喜欢这一点,哈哈

在这里插入图片描述
在这里插入图片描述

总结

  • 1 我还是适合搞量化的(从几个要素上分析)
  • 2 量化应该也是可以成功的
  • 3 技术上用python明显是更好的选择(2010年那会还没有这个)
  • 4 规则引擎搞自动化交易是最好的选择,我也可以实现这部分
  • 5 我认为无杠杆交易是对的
  • 6 夏普率、最大回撤和最大回撤周期这三个指标还是值得计算的
  • 7 技术方面我觉得我的工具箱足够丰富和强大
  • 8 基于现有的策略进行修改这个诀窍我觉得是对的
  • 9 我还可以使用模型对效果进一步增强
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值