Quaternions for Computer Graphics(计算机图形中的四元数)翻译——第二章,数集和代数

电子书可以在这下载:https://download.csdn.net/download/yukinoai/10699728

第二章 数集和代数

2.1介绍

 

在这一章中我们复习一下数集的基本思想,和如何算数的和代数的操作它们。我们简要地看一下表达式和等式以及用于构建和评估的规则。本章的第二部分用于定义组,环和字段。

2.2数集

2.2.1自然数

自然数是指例如1,2,3,4等的所有数字,所有自然数和0组成的集合{0,1,2,3,4,…}用N表示:

N={0,1,2,3,4,…}

2.2.2实数

科学计算使用广泛的数学对象,如标量,向量和矩阵。 一个标量有一个单一的数值,而一个向量有两个或更多的数字来表示向量的大小和方向。 矩阵是一个矩形的数组,可能有各种各样的属性。十进制数形成了由R标识的实数集合。这些数字是有符号的,可以组织成一条向负无穷大和正无穷大延伸并包含零的直线。 无穷大的概念是一个奇怪的概念,是德国数学家格奥尔格·康托尔(GeorgCantor,1845-1918)的建立起来的。 康托还发明了集合论,证明实数比自然数更多。 幸运的是,我们不需要在本书中使用这样的概念。

2.2.3整数

整数集Z包括自然数和他们的负数:

Z={…-3,-2,-1,0,1,2,3,4,…}

2.2.4有理数

有理数集是Q,是由如下形式的数组成的:

a/b,a,b∈Z且b≠0.

2.3算数操作

我们使用算术运算加法,减法,乘法和除法操作数字,其结果是封闭或不封闭的,又或是没有定义的,这取决于底层集合。 例如,当我们将两个自然数相加时,结果总是另一个自然数,因此操作是关闭的:

3 + 4 = 7。

但是,当我们减去两个自然数时,结果可能不一定是自然数。 例如,虽然

6 - 2 = 4

是一个封闭的操作,

2 - 6 = -4

没有封闭,因为-4不在自然数集内。

两个自然数的乘积总是一个封闭的运算,然而,除法引起一些问题。 首先,将一个偶数自然数除以2是一个封闭的操作:

16/2 = 8。

而奇数自然数除以偶数自然数产生了小数:

7/2 = 3.5

没有封闭,因为3.5不属于自然数的集合。 用集合的语言表达是

3.5∉N

将任何数字乘以零都会导致零,这是一个封闭的操作;但是将任何数字除以零都是未定义的,并且必须排除。

实数没有自然数的问题,存在加法,乘法和除法封闭:

a + b = c   a,b,c∈R

ab = c     a,b,c∈R

a / b = c    a,b,c∈R,b≠ 0。

请注意,ab是a×b的简写。

2.4公理

当我们构造代数表达式时,我们使用特定的称为公理的法则。对于加法和乘法,我们知道数字的组合对最终结果没有什么不同。

2 +(4 + 6)=(2 + 4)+ 6

2×(3×4)=(2×3)×4。

这是结合律,

表示为:

a +(b + c)=(a + b)+ c

a(bc)=(ab)c。

我们也知道在加法或乘法中先后顺序对最终结果没有影响: 2 +6 = 6 + 2和2×6 = 6×2。这是交换律,表示为:

a + b = b + a

ab = ba。

还有分配律:

a(b + c)= ab+ ac

(a + b)(c + d)= ac+ ad + bc + bd。

我们回顾这些公理的原因是,它们不应该被认为是用数学符号来刻画,而是适用于所有被合理定义的东西。因为当我们来到四元数时,我们会发现他们不服从交换公理,这并不奇怪。如果你已经使用矩阵,你会知道矩阵乘法也是不可交换的,但它符合结合律。

2.5表达

使用上面的公理,我们可以构造各种表达式,如:

a(2 + c) d/e + a − 10
g/(ac bd) + h/(defg).

我们也使用符号来提高一些效率,如n2。 这个符号引入了另一组性质:

anam= an+m

an/am= anm

(an)m= anm

an/an= a0 = 1

1/an= a−n

a1/n= na.

接下来,我们必须包括各种各样的功能,如平方根,正弦和余弦,这些功能可能看起来简单, 但是我们必须警惕他们。 例如,按惯例√16= 4。 但是,x2= 16有两个解:±√16=±4。 而√-16不属于自然数或实数。 因此,如果a<0,则表达式√a没有真正的根。

类似地,当使用正弦和余弦等三角函数时,我们必须记住,这些函数的取值范围在-1到+1之间,包括0,这意味着如果它们被用作分母,结果可能是未定义的。 例如,如果sinα=0,则这个表达式是不确定的

a/sinα

2.6等式

接下来,我们来看一个方程式,我们将一个表达式的值赋值给一个变量。在大多数情况下,这个赋值是直接的,并且得到一个实数结果,如

x2 - 16 = 0

其中x =±4。 但有趣的是,只是通过改变符号来

x2 + 16 = 0

我们就创建一个没有实数解的方程。 但他有复数解,这是第三章的主题。

2.7有序对

一个有序对或对(a,b)是一个具有两个输入,坐标或投影的对象,其中第一个或左边的与第二个或右边的是可区分的。 例如,除非a = b,否则(a,b)与(b,a)是可区分的。 也许有序对的最好例子是(x,y),它表示平面上的一个点,其中顺序始终是x坐标在前,后面是y坐标。

有序对和三元有序组在计算机图形学中被广泛用于表示平面上的点(x,y),空间中的点(x,y,z)以及诸如(r,g,b)和(h,S,v)。 在这些领域中它们都是实数。 没有什么可以阻止我们使用有序对来开发一个代数,它们的行为就像另一个代数一样,就像我们后面要讲的复数和四元数一样。 目前,我们来探讨一下有序对的操纵方法。

假设我们选择描述一个通用的有序对:

a = (a1,a2) a1,a2 ∈ R.

我们可以为如下的两个对象定义加法:

a = (a1,a2)

b = (b1,b2)

a + b = (a1 + b1,a2 + b2).

例如

a = (2, 3)

b = (4, 5)

a + b = (6, 8).

我们也可以定义乘法

ab = (a1b1, a2b2)

记住这是我们定义的

另外我们也可以定义数乘

λ(a1,a2) = (λa1,λa2) λ∈R

3(2, 3) = (6, 9).

根据上面的规则,我们可以写出

(a1, a2) = (a1, 0) + (0,a2)= a1(1, 0) + a2(0, 1)

如果我们利用乘法法则对上面的单元有序对(0,1)(1,0)求方,可以得到

(1, 0)2 = (1, 0)

(0, 1)2 = (0, 1)

可以看出他们的性质就和实数一样,没有例外。

2.8群,环和域

数学家们使用一系列令人眼花缭乱的名字来标识他们的发明,这似乎每天都在发生。 即使是“四元”这个名字也不是独创的,而且在“四元数”的背景下经常出现在历史上:

“TheRomans detached a quaternion or four men for a night guard ...”[19]。

不要过于正式,让我们来探索一些与本书包含的思想相关的数学结构。

2.8.1群

我们已经介绍了一个集合的概念,以及属于一个集合是什么意思。 我们还发现,当我们对某个集合的成员应用某些算术运算时,我们可以确定封闭,不封闭,或者结果是不确定的。

当将集合与算术运算组合时,创建另一个实体是方便的:群,一个由公理描述元素间关系的集合。 该集可能包含数字,矩阵,向量,四元数,多项式等,并在下面表示为a,b和c。

这些公理使用“◦”符号表示任何二元运算,例如+, - ,×。 而一个群是由集合和二元运算组成的。 例如,我们可能希望在加法下形成一组整数:(Z,+),或者我们可能希望验证四元数是否在乘法运算下形成一个群:(H,×)。

作为一个群,下面所有的公理必须适用于这个集合S.特别是,必须存在一个特殊的恒等元素e∈S,并且对于每个a∈S,必须存在一个逆元素a-1∈S,所以 以下公理得到满足:

封闭性: a b ∈S  a,b ∈S

结合律: (a b) c = a (b c)a,b,c ∈S .

单位元: a e = e a = a a,e ∈ S 

逆元: a a−1 = a−1 ◦ a = e a,a−1,e∈S

我们将一个组描述为(S,◦),其中S是集合,“◦”是运算。 例如,(Z,+)是加法运算下的整数群,(R,×)是乘法运算下的实数群。

让我们用三个例子来把这些公理带入生活。 (Z,+):整数Z在加法运算下形成一个群:

封闭性:  −23 + 24 = 1

结合律: (2 + 3) + 4 = 2 + (3 + 4) = 9

单位元: 2 + 0 = 0 + 2 = 2

逆元:  2 + (−2) = (−2) + 2 = 0.

(Z,×): 整数集在乘法运算下没有形成群

封闭性:  −2 × 4 = −8

结合律: (2 × 3) × 4 = 2 × (3 × 4) = 24

单位元: 2 × 1 = 1 × 2 = 2

逆元: 2−1 = 0.5 (0.5 ∉ Z).

并且,0也没有逆元。

(Q,×):无零有理数在运算下构成了一个群:

封闭性: 2 /5×2/ 3=4/15

结合律: 2/ 5 × 2 /3 × 2 /1 = 2 /5 × 2/ 3 × 1 /2 = 15/ 2

单位元:2 /3×1 /1=1 /1×2 /3=2/ 3

逆元: 2 /3×3 /2=1 /1  其中3/ 2 = (3/2)−1.

2.8.2阿贝尔群

最后,一个以挪威数学家尼尔斯·亨里克·阿贝尔(NeilsHenrik Abel,1802-1829)命名的阿贝尔群,是一种元素的顺序不影响结果的群,即群具有交换律。 因此有五个公理:封闭性,结合律,单位元,逆元和交换律:

交换律:a b = b a    a,b S.

例如,在加法运算下的整数集合是阿贝群(Z,+),但是三维转动一般不能交换,在三维空间的所有转动组成的集合形成一个不具有交换律的群。

2.8.3环

环是一个定义更加精确的群,在这里我们有一个集合,其中的元素可以进行满足公理的加法和乘法。现在有实数环,复数环,整数环,矩阵环,方程环,多项式环等,环(准确的说是交换环)正式的定义是一个系统满足(S,+)和(S,×)是阿贝尔群且具有分配律:

加法结合律: a + (b + c) = (a +b)+ca,b,c S.

乘法结合律: a × (b × c) = (a ×b)×ca,b,c S.

分配律: a × (b + c) = (a × b) + (a × c) and (a + b) × c = (a × c) + (b × c)a,b,c S.

2.8.4域

虽然环支持加法和乘法,但它们不一定支持除法。然而,除法作为一个重要的算术操作,域被创造出来就是为了支持它,但有一个附带条件:除以零是不允许的。因此我们有实数R的域,有理数Q的域,复数C的域,然而,我们会发现,四元数不形成一个域,但他们形成所谓的除环。

因此,每个域都是一个环,但不是每一个环都是一个域。

2.8.5除环

除环或除法代数,是每一个元素都有逆元的环,附带条件是,元素是没有零的。除环没有乘法交换律。这里除环的形式描述为(S,+,×):

加法结合律: (a + b) + c = a + (b + c)a,b,c S.

加法交换律: a + b = b + aa,b S.

加法单位元 0: 0 + a = a + 0 a, 0 ∈ S.

加法逆元: a + (a) = (a)+a= 0 a,a S.

乘法结合律: (a × b) × c = a × (b × c)a,b,c S.

乘法单位元 1: 1 × a = a × 1 a, 1 ∈ S.

乘法逆元: a × a−1 = a−1 × a = 1a,a−1 ∈S,a ≠ 0.

分配律: a × (b + c) = (a × b) + (a × c) and(b + c) × a = (b × a) + (c × a)a,b,c S.

在1878年,德国数学家,Ferdinand Georg Frobenius (1849–1917),证明只有实数,复数,四元数有除环。

2.9总结

本章的目的是说明代数的公理系统,以及算术运算结果可以是封闭的、不封闭的或未定义的。也许有些有序对、几何、群、域和环的定义都是新的,但他们已经经常用于四元数中。。

我们考虑复数,四元数时,所有这些思想会再次出现。

2.9.1定义总结

Ordered pair(有序对)

Anobject with two distinguishable components: (a, b) such that (a,b)(b,a)

unless a = b.

Set(集合)

Definition:A set is a collection of objects.

Notation:k ∈ Z means k belongsto the set Z.

C: Set of complex numbers

H: Set of quaternions

N: Set of natural numbers

Q: Set of rational numbers

R: Set of real numbers

Z: Set of integers.

Group(群)

Definition:A group (S,) is a setS and a binary operation ‘◦’ and the axioms defining closure, associativity, an identityelement, and an inverse element.

Closure: a b Sa,b S.

Associativity: (a b) c = a(bc)a,b,c S.

Identityelement: a e = e a=aa,eS.

Inverseelement: a a−1 = a−1 ◦ a = e. a,a−1,e S.

Ring(环)

Definition:A ring is a group whose elements can be added/subtracted and multiplied, using some preciseaxioms:

Additiveassociativity: a + (b + c) = (a + b) + ca,b,c S.

Multiplicativeassociativity: a × (b × c)=(a× b) × ca,b,c S.

Distributivity: a × (b + c) = (a × b) + (a × c) and

(a + b) × c = (a × c) + (b × c)a,b,c S.

Field(域)

Definition:A field is a ring that supports division.

Divisionring(除环)

Everyelement of a division ring has an inverse element, with the proviso that the

elementis non-zero. The algebra also supports non-commutative multiplication.

Additiveassociativity: (a + b) + c = a + (b + c)a,b,c S.

Additivecommutativity: a + b = b +aa,bS.

Additiveidentity 0: 0 + a = a + 0 a, 0 ∈ S.

Additiveinverse: a + (a) = (a)+a= 0 a,a S.

Multiplicativeassociativity: (a × b) × c = a × (b × c)a,b,c S.

Multiplicativeidentity 1: 1 × a = a × 1 a, 1 ∈ S.

Multiplicativeinverse: a × a−1 = a−1 ×a= 1a,a−1 ∈ S, a≠ 0.

Distributivity: a × (b + c) = (a × b) + (a × c) and (b + c) ×a=(b × a) + (c × a)a,b,c S.

 

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值