pytorch使用多GPU

本文介绍了如何在PyTorch中检查和利用GPU资源。通过`torch.cuda.device_count()`检查GPU数量,使用`nvidia-smi`获取显卡信息。在多GPU环境下,通过`torch.nn.DataParallel`实现模型并行训练,并将数据和模型分配到特定GPU。同时讨论了如何选择部分GPU进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 查看几块GPU
import torch
print(torch.cuda.device_count())

# 查看显卡配置信息
nvidia-smi

# 单主机多块GPU使用
device = torch.device("cuda:0" if torch.cuda.is_avaliable() else :"cpu")
device0 = torch.device("cuda:0")
device1 = torch.device("cuda:1")

net = torch.nn.DataParallel(model)  # 可用的GPU都可以被使用
net.to(device)

# 如何利用部分GPU ?????
# 假设有4块GPU 【0,1,2,3】
device_id = [0, 1, 2, 3]
input_data = input_data.to(device=device_id[0])
net = torch.nn.DataParallel(model)
net.to(device)

Pytorch使用GPU进行训练注意事项 | 文艺数学君

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fancyNSEU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值