很久以前,T王国空前繁荣。
为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。
同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。
所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。
他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数 n,表示包括首都在内的T王国的城市数。
城市从 1 开始依次编号,1 号城市为首都。
接下来 n−1 行,描述T国的高速路(T国的高速路一定是 n−1 条)。
每行三个整数 Pi,Qi,Di,表示城市 Pi 和城市 Qi 之间有一条双向高速路,长度为 Di 千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
数据范围
1≤n≤105,
1≤Pi,Qi≤n,
1≤Di≤1000
输入样例:
5
1 2 2
1 3 1
2 4 5
2 5 4
输出样例:
135
本题考查树的直径
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 2e5 + 10;
int w[N],h[N],ne[N],e[N],idx,n,max_dist_node;
long long ans;
bool st[N/2],t;
void add(int a,int b,int c)
{
w[idx] = c,e[idx] = b,ne[idx] = h[a],h[a] = idx++;
}
void dfs(int u,int s,int c)
{
if(c > ans)
{
ans = c;
if(!t) max_dist_node = s;
}
st[s] = true;
if(u >= n) return;
for(int i = h[s]; i != -1; i = ne[i])
{
int j = e[i];
if(!st[j])
dfs(u + 1,j,c + w[i]);
}
}
long long sum(long long n)
{
return n*(21 + n) / 2;
}
int main()
{
cin >> n;
memset(h,-1,sizeof h);
//建图
for(int i = 0; i < n - 1 ; i++)
{
int a,b,c;
cin >>a >> b >> c;
add(a,b,c);
add(b,a,c);
}
//先dfs一遍找到一个离当前点最远的点
dfs(0,1,0);
t = true;
memset(st,0,sizeof st);
//从找到的点再dfs一遍找最远的点
dfs(0,max_dist_node,0);
//两点的权值即为树的直径
cout << sum(ans) <<endl;
return 0;
}