使用IDEA+Maven开发wordCount案例【MapReduce编程实现】

本文介绍了如何使用IDEA和Maven开发MapReduce的wordCount案例。通过将文件拆分为多个block,利用Mapper进行单词计数,然后通过Shuffle和Reducer聚合每个单词的总数,最终将结果输出到文件系统。
摘要由CSDN通过智能技术生成

这是学习MR编程的一个典型模型,这里分享一下。
wordCount需求是统计文件中每个单词出现的次数。
处理过程中主要是将作业拆分成Map阶段(Mapper tasks)和Reduce阶段(Reducer tasks),数据转换过程如下:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, {v2,v2…}> -> reduce -> <k3, v3> (output)

我的理解其流程是:
一个文件被拆分成多个block(与blocksize对应),每个block由一个map来处理,给每个单词计数为1,再经过shuffling操作,将相同的单词放在一起,最后通过reduce统计每一块中相同单词的数量,然后输出到文件系统(可以是本地也可以是HDFS)。

具体实现代码和详细注释如下:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值