这是学习MR编程的一个典型模型,这里分享一下。
wordCount需求是统计文件中每个单词出现的次数。
处理过程中主要是将作业拆分成Map阶段(Mapper tasks)和Reduce阶段(Reducer tasks),数据转换过程如下:
(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, {v2,v2…}> -> reduce -> <k3, v3> (output)
我的理解其流程是:
一个文件被拆分成多个block(与blocksize对应),每个block由一个map来处理,给每个单词计数为1,再经过shuffling操作,将相同的单词放在一起,最后通过reduce统计每一块中相同单词的数量,然后输出到文件系统(可以是本地也可以是HDFS)。
具体实现代码和详细注释如下:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apa