操作环境:ubuntu16.04 64位
1.下载darknet
git clone https://github.com/pjreddie/darknet cd darknet make
2.下载预先训练的权重样本
使用命令:
wget https://pjreddie.com/media/files/yolov3.weights
或直接点击下载,再拉进服务器中
权重样本下载地址
https://pjreddie.com/media/files/yolov3.weights
yolov3.weights 一定要放到 /darknet 目录下
3.运行探测器
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
如果正常运行,则会输出如下内容:
可以看到打印出了图片中检测到的对象
4.还可以先用权重样本对探测器进行训练,训练结束后再输入图片路径。
./darknet detect cfg/yolov3.cfg yolov3.weights
5.预先训练的权重样本对检测结果有很大的影响,比如用一个比之前小很多的权重样本yolov3-tiny进行训练。
使用命令:
wget https://pjreddie.com/media/files/yolov3-tiny.weights
或直接点击下载,再拉进服务器中
yolov3-tiny权重样本下载地址
https://pjreddie.com/media/files/yolov3-tiny.weights
用yolov3-tiny训练并识别刚才的图片
./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg
可以看到识别虽然也检测到了dog、car、truck、bicycle,但相似度却差别很大。
使用GPU检测速度会快很多,如下图,可以看出识别时间仅仅0.08秒。
如果想训练自己的模型,或者采用gpu来进行检测,请参考我的yolo系列第二篇博文: