YOLOv8 | Windows 系统下从零开始搭建 YOLOv8 项目环境


我所下载的内容及相应的网址:

⚠️ WARNING
本博客是我在看过小土堆视频的基础上自己摸索出来的,在我的笔记本上亲测有效。期间我也遇到过一些问题,比如:没有换源导致 conda install 失败、没关 VPN 导致 pip install 失败等。由此可见,环境搭建过程并非一帆风顺,请各位具体问题具体分析。
⚠️ WARNING
虽然 Ultralytics 已经把仓库更新成 YOLOv11 了,但还是可以在仓库的 Releases 中查找历史版本。

可参考的视频资源:

本博客的介绍可能会比较粗糙,可以先跟着小土堆了解一下环境搭建的通用步骤。此外,本博客只介绍了如何搭建 YOLOv8 项目环境,并没有介绍如何使用 YOLOv8,请参考第二个视频。



1 下载 Anaconda3

进入 Anaconda 官网(https://repo.anaconda.com/),点击此处查看所有安装包:

在这里插入图片描述
看清后缀,选择合适的安装包进行下载:

在这里插入图片描述
随后进行安装(安装过程已省略)

网上说 Anaconda 的版本不能太新也不能太老,所以我只是选了一个有眼缘的!



2 在 Anaconda3 中搭建环境

我们需要创建一个新的虚拟环境,安装 Python/Pytorch 等



2.

要开发一个基于YOLOv5和Deepsort的区域入侵检测系统,首先需要在PyCharm中正确配置开发环境。以下是详细的开发和配置步骤,涵盖了从环境搭建系统实现的全过程。 参考资源链接:[基于 YOLOv5 和 Deepsort 的 PyQt5 入侵检测系统开发](https://wenku.csdn.net/doc/5db48u8ehv?spm=1055.2569.3001.10343) 第一步,配置PyCharm环境: 1. 安装Python解释器并创建一个新项目。 2. 安装PyQt5库:运行`pip install PyQt5`命令。 3. 为了使用Qtdesigner和PYUIC工具,需要在PyCharm设置中配置外部工具。 4. 安装YOLOv5和Deepsort所需的依赖,根据YOLOv5的GitHub仓库安装所有依赖,如PyTorch等。 第二步,模型训练与准备: 1. 下载预训练的YOLOv5模型或使用自己的数据集进行训练,确保模型能够识别目标。 2. 准备Deepsort模型,可以使用现成的模型或根据需求训练自己的模型。 3. 将YOLOv5和Deepsort模型的权重文件保存到项目中的适当位置。 第三步,开发GUI系统: 1. 使用Qtdesigner设计GUI界面,创建主窗口、视频显示控件、控件按钮等。 2. 在PyCharm中通过PYUIC将设计的界面转换成.py文件。 3. 使用PyQt5编写界面逻辑代码,实现视频加载、暂停、继续检测等功能。 第四步,集成YOLOv5和Deepsort到GUI: 1. 在PyQt5的主控界面逻辑中加载YOLOv5模型,并对视频帧进行目标检测。 2. 将YOLOv5检测到的目标传递给Deepsort进行跟踪。 3. 根据跟踪结果,判断是否发生了入侵行为,并在界面上给出警告。 第五步,系统测试与优化: 1. 对系统进行全面测试,确保视频流的处理无延迟、目标检测准确、入侵判断逻辑正确。 2. 根据测试结果进行必要的调整和优化。 完成以上步骤后,你将拥有一个可以实时检测并可视化显示入侵行为的系统。如果你希望深入学习相关技术,建议参考《基于 YOLOv5 和 Deepsort 的 PyQt5 入侵检测系统开发》这份资源,它不仅涵盖了当前问题的解决方案,还包括了更详细的技术细节和项目开发经验分享。 参考资源链接:[基于 YOLOv5 和 Deepsort 的 PyQt5 入侵检测系统开发](https://wenku.csdn.net/doc/5db48u8ehv?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值