tensorflow2.0莺尾花iris数据集分类|超详细

tensorflow2.0莺尾花iris数据集分类

超详细

直接上代码

#导入模块
import tensorflow as tf #导入tensorflow模块

from sklearn import datasets #导入sklearn中的datasets模块,方便下载内置的iris数据集

from matplotlib import pyplot as plt #导入matplotlib中的pyplot,待会画图

import numpy as np #导入numpy模块做数学运算

#导入数据
x_data = datasets.load_iris().data #导入iris数据集的特征

y_data = datasets.load_iris().target #导入iris数据集的标签

#随机打乱顺序,使训练更具准确性
np.random.seed(120)#调用numpy中的random方法里的seed方法,赋值120,使输入特征和标签能够一一对应

np.random.shuffle(x_data) #调用numpy中的random方法里的shuffle方法,将训练集x_data里的特征值乱序

np.random.seed(120)#调用numpy中的random方法里的seed方法,赋值120,使输入特征和标签能够一一对应

np.random.shuffle(y_data) #调用numpy中的random方法里的shuffle方法,将测试集y_data里的标签乱序

tf.random.set_seed(120)#调用tensorflow中的random方法里的set_seed方法,赋值120

#划分数据集
x_train = x_data[:-30] #将iris数据集(特征,共150行,此时已打乱)前120行作为训练集x_train

y_train = y_data[:-30] #将iris数据集(标签,共150行,此时已打乱)前120行作为训练集y_train

x_test = x_data[-30:] #将iris数据集(特征,共150行,此时已打乱)最后30行作为测试集x_test

y_test = y_data[-30:] #将iris数据集(标签,共150行,此时已打乱)最后30行作为测试集y_test

#转换特征值的数据类型,使之与后面数据运算时数据类型一致
x_train = tf.cast(x_train, dtype = tf.float32) #调用tensorflow中的cast方法,将x_train中的特征值类型转换为float32

x_test = tf.cast(x_test, dtype = tf.float32) #调用tensorflow中的cast方法,将x_test中的特征值类型转换为float32

#用from_tensor_slices方法将特征值和标签值配对
train_data_batch = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)#将训练集的特征x_train和标签y_train配对,用batch方法将120个训练数据分成32个为一组的批次

test_data_batch = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)#将测试集的特征x_test和标签y_test配对,用batch方法将30个训练数据分成32个为一组的批次

#用truncated_normal方法构建神经网络,并用Variable方法标记可训练数据
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev = 0.1, seed = 1))#用truncated_normal方法,构建4个输入特征,3个分类的神经网络结构,标准差为0.1的正态分布,随机种子为1

b1 = tf.Variable(tf.random.truncated_normal([3], stddev = 0.1, seed = 1))#用truncated_normal方法,因为b1和w1的分类维度要一样,所以是3,标准差为0.1的正态分布,随机种子为1

#设置变量
learnRate = 0.1 #学习率为0.1

train_loss_results = [] #将每轮的loss记录在此列表中,为后面画loss曲线时提供数据

test_accuracy = [] #将每轮的精度accuracy记录在此列表中,为后面画精度accuracy曲线提供数据

epoch = 500 #循环500轮

loss_all = 0 #每轮分4个step,loss_all记录4个step生成的4个loss的和

#训练部分
for epoch in range(epoch): #遍历数据集,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_data_batch): #遍历batch,每个step循环一次batch
        with tf.GradientTape() as tape: #用上下文管理器记录梯度信息
            y = tf.matmul(x_train, w1) + b1 #神经网络乘加运算,用tensorflow中的matmul方法将训练特征值x_train和w1参数进行矩阵相乘
            y = tf.nn.softmax(y) #用tensorflow中的softmax方法将神经网络乘加运算后得到的输出符合正态分布,输出和为1,可以在之后用来与独热码相减求loss
            y_one_hot = tf.one_hot(y_train, depth = 3) #用tensorflow中的one_hot方法将训练标签y_train转换为独热码格式,因为y输出为3,所以深度为3,方便接下来计算loss的和
            loss = tf.reduce_mean(tf.square(y_one_hot - y)) #用tensorflow中的reduce_mean方法求平均值,用tensorflow中的square方法求平方,这里用均方误差求损失函数loss
            loss_all += loss.numpy() #将每个step计算出的loss累加,后面可以用来求loss平均值,

        #计算loss对各个参数的梯度
        loss_gradient = tape.gradient(loss, [w1, b1])#用tensorflow中的GradientTape方法中的gradient方法求loss对各个参数w1,b1的梯度gradient

        #梯度更新
        w1.assign_sub(learnRate * loss_gradient[0]) #用assign_sub方法进行自减,实现参数w1的自动更新,等价于w1 = w1 - learn_Rate * loss_gradient[0]
        b1.assign_sub(learnRate * loss_gradient[1]) #用assign_sub方法进行自减,实现参数b1的自动更新,等价于b = b - learn_Rate * loss_gradient[1]

    # 每个epoch,打印loss信息
    print("epoch: {}, loss: {}".format(epoch,
                                       loss_all / 4))  # 每个epoch,打印loss信息,有4个step,所以总loss_all要除以4,求得每次step的平均loss
    train_loss_results.append(loss_all / 4)  # 用append方法将4个step的loss求平均值记录在train_loss_results中
    loss_all = 0  # loss_all归零,为下一个epoch的求loss做准备

    # 测试部分
    total_correct = 0  # total_correct为预测对的样本个数,初始化为0
    total_test_number = 0  # total_number为测试的总样本数,初始化为0

    for x_test, y_test in test_data_batch:  # 遍历训练集的特征值和标签值
        # 用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1  # 用tensorflow中的matmul方法来进行乘加运算,再加上b1得到前向传播的结果
        y = tf.nn.softmax(y)  # 用tensorflow中的softmax方法将神经网络乘加运算后得到的前向传播的结果符合正态分布,输出和为1,可以在之后用来与独热码相减求loss
        predict = tf.argmax(y, axis=1)  # 用tensorflow中的argmax方法,返回y中最大值的索引,即预测的标签分类,axis表示按列求值
        predict = tf.cast(predict, dtype=y_test.dtype)  # 将predict的类型转换为测试集标签y_test的数据类型
        correct = tf.cast(tf.equal(predict, y_test),
                          dtype=tf.int32)  # 用tensorflow中的equal方法判断,若分类正确,则值为1,否则为0,并用tensorflow中的cast方法将bool类型转化为int32类型
        correct = tf.reduce_sum(correct)  # 用tensorflow中的reduce_sum方法将每个batch的correct数加起来
        total_correct += int(correct)  # 将所有batch中的correct数转化为int类型,并加起来
        total_test_number += x_test.shape[0]  # 用shape方法返回测试集特征x_test的行数,也就是测试的总样本数

    accuracy = total_correct / total_test_number  # 总的准确率
    test_accuracy.append(accuracy)  # 测试集的准确率添加到列表中来,方便记录
    print("test_accuracy:", accuracy)  # 打印测试集精度准确率
    print("-------------------------------------------------")  # 为每个epoch进行分隔,方便查看

# 绘制loss曲线
plt.title('Loss Function Curve')  # 用matplotlib中的title方法标出图片标题
plt.xlabel("Epoch")  # 用matplotlib中的xlabel方法标出x轴变量名称
plt.ylabel("Loss")  # 用matplotlib中的ylabel方法标出y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 用matplotlib中的plot方法逐点画出训练集损失值结果train_loss_results值并连线,连线的标签为Loss
plt.legend()  # 用matplotlib中的legend方法画出曲线图标
plt.show()  # 用matplotlib中的show方法画出图像

# 绘制accuracy曲线
plt.title("Accuracy Curve")  # 用matplotlib中的title方法标出图片标题
plt.xlabel("Epoch")  # 用matplotlib中的xlabel方法标出x轴变量名称
plt.ylabel("Accuracy")  # 用matplotlib中的ylabel方法标出y轴变量名称
plt.plot(test_accuracy, label="$Accuracy$")  ##用matplotlib中的plot方法逐点画出测试集精准度test_accuracy值并连线,连线的标签为Accuracy
plt.legend()  # 用matplotlib中的legend方法画出曲线图标
plt.show()  # 用matplotlib中的show方法画出图像




 结果为:

E:\Anaconda3\envs\TF2\python.exe C:/Users/Administrator/PycharmProjects/untitled8/iris数据集分类.py
epoch: 0, loss: 0.06313184648752213
test_accuracy: 0.36666666666666664
-------------------------------------------------
epoch: 0, loss: 0.060809701681137085
test_accuracy: 0.36666666666666664
-------------------------------------------------
epoch: 0, loss: 0.06491364538669586
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 0, loss: 0.055006254464387894
test_accuracy: 0.4666666666666667
-------------------------------------------------
epoch: 1, loss: 0.05249659717082977
test_accuracy: 0.6
-------------------------------------------------
epoch: 1, loss: 0.05205550417304039
test_accuracy: 0.6
-------------------------------------------------
epoch: 1, loss: 0.05103917792439461
test_accuracy: 0.5333333333333333
-------------------------------------------------
epoch: 1, loss: 0.05103524401783943
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 2, loss: 0.05039295554161072
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 2, loss: 0.0480034239590168
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 2, loss: 0.04670323431491852
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 2, loss: 0.04914751648902893
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 3, loss: 0.04708673432469368
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 3, loss: 0.04542688652873039
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 3, loss: 0.044235099107027054
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 3, loss: 0.0470397025346756
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 4, loss: 0.0440203957259655
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 4, loss: 0.04315203055739403
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 4, loss: 0.0421343557536602
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 4, loss: 0.04514491185545921
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 5, loss: 0.0413854755461216
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 5, loss: 0.04116469994187355
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 5, loss: 0.04034166410565376
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 5, loss: 0.04348427802324295
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 6, loss: 0.03914759308099747
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 6, loss: 0.03945424407720566
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 6, loss: 0.03882221505045891
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 6, loss: 0.042040903121232986
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 7, loss: 0.037248674780130386
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 7, loss: 0.037990082055330276
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 7, loss: 0.03753271698951721
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 7, loss: 0.04078803211450577
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 8, loss: 0.035629648715257645
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 8, loss: 0.03673495724797249
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 8, loss: 0.03643135353922844
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 8, loss: 0.03969713672995567
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 9, loss: 0.03423843905329704
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 9, loss: 0.035652872174978256
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 9, loss: 0.03548220545053482
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 9, loss: 0.038741737604141235
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 10, loss: 0.03303193673491478
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 10, loss: 0.034712422639131546
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 10, loss: 0.03465599939227104
test_accuracy: 0.6333333333333333
-------------------------------------------------
epoch: 10, loss: 0.037898823618888855
test_accuracy: 0.6333333333333333
-------------------------------------------------
等等.........................

 

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值