上一节博文介绍了利用opencv来进行视频的读取,本节中将在读取视频的基础上,利用opencv自带的人脸识别分类器haarcascade_frontalface_alt2.xml将人脸识别出来,并且将每一张人脸保存为图片,用于训练。
一、获取视频数据
获取视频时同上一节,具体参考:http://blog.csdn.net/yunge812/article/details/79444172
二、读取分类器函数
classifier=cv2.CascadeClassifier('/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml')
这个分类器是opencv自带的人脸检测分类器
三、加载分类器
#图像灰度化
grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
#加载分类器 opencv自带
faceRects = classifier.detectMultiScale(grey, scaleFactor=1.2,
minNeighbors=3, minSize=(32, 32))
faceRects 中存储的就是人脸的x,y,w,h
四、将得到的人脸存储为图片
#这里为每个捕捉到的图片进行命名,每个图片按数字递增命名。
image_name='traind