788. 旋转数字
我们称一个数 X 为好数, 如果它的每位数字逐个地被旋转 180 度后,我们仍可以得到一个有效的,且和 X 不同的数。要求每位数字都要被旋转。
如果一个数的每位数字被旋转以后仍然还是一个数字, 则这个数是有效的。0, 1, 和 8 被旋转后仍然是它们自己;2 和 5 可以互相旋转成对方(在这种情况下,它们以不同的方向旋转,换句话说,2 和 5 互为镜像);6 和 9 同理,除了这些以外其他的数字旋转以后都不再是有效的数字。
现在我们有一个正整数 N, 计算从 1 到 N 中有多少个数 X 是好数?
示例:
输入: 10
输出: 4
解释:
在[1, 10]中有四个好数: 2, 5, 6, 9。
注意 1 和 10 不是好数, 因为他们在旋转之后不变。
提示:
- N N N 的取值范围是 [ 1 , 10000 ] [1, 10000] [1,10000]。
解:
一、暴力循环
class Solution:
def rotatedDigits(self, N: int) -> int:
res=0
for i in range(1,N+1):
flag=0
for x in str(i):
if x in '2569' :
flag=1
elif x in '347':
flag=0
break
if flag==1:
res+=1
return res
二、动态规划
已知个位数的好数情况是
d
=
[
0
,
0
,
1
,
−
1
,
−
1
,
1
,
1
,
−
1
,
0
,
1
]
d= [0, 0, 1, -1, -1, 1, 1, -1, 0, 1]
d=[0,0,1,−1,−1,1,1,−1,0,1]
则动态转移方程为:
d
[
i
]
=
(
d
[
i
/
/
10
]
=
=
1
o
r
d
[
i
%
10
]
=
=
1
)
d[i]=(d[i // 10] == 1 or d [i \% 10]==1 )
d[i]=(d[i//10]==1ord[i%10]==1)
class Solution:
def rotatedDigits(self, N: int) -> int:
d = [0, 0, 1, -1, -1, 1, 1, -1, 0, 1] + [0] * (N - 9)
for i in range(N + 1):
if d[i // 10] == -1 or d[i % 10] == -1:
d[i] = -1
elif d[i // 10] == 1 or d[i % 10] == 1:
d[i] = 1
return d[:N+1].count(1)