788. 旋转数字

788. 旋转数字

我们称一个数 X 为好数, 如果它的每位数字逐个地被旋转 180 度后,我们仍可以得到一个有效的,且和 X 不同的数。要求每位数字都要被旋转。

如果一个数的每位数字被旋转以后仍然还是一个数字, 则这个数是有效的。0, 1, 和 8 被旋转后仍然是它们自己;2 和 5 可以互相旋转成对方(在这种情况下,它们以不同的方向旋转,换句话说,2 和 5 互为镜像);6 和 9 同理,除了这些以外其他的数字旋转以后都不再是有效的数字。

现在我们有一个正整数 N, 计算从 1 到 N 中有多少个数 X 是好数?

示例:

输入: 10
输出: 4
解释:
在[1, 10]中有四个好数: 2, 5, 6, 9。
注意 1 和 10 不是好数, 因为他们在旋转之后不变。

提示:

  • N N N 的取值范围是 [ 1 , 10000 ] [1, 10000] [1,10000]

解:

一、暴力循环

class Solution:
    def rotatedDigits(self, N: int) -> int:
        res=0
        for i in range(1,N+1):
            flag=0
            for x in str(i):
                if x in '2569' :
                    flag=1
                elif x in '347':
                    flag=0
                    break
            if flag==1:
                res+=1
        return res

二、动态规划
已知个位数的好数情况是 d = [ 0 , 0 , 1 , − 1 , − 1 , 1 , 1 , − 1 , 0 , 1 ] d= [0, 0, 1, -1, -1, 1, 1, -1, 0, 1] d=[0,0,1,1,1,1,1,1,0,1]
则动态转移方程为: d [ i ] = ( d [ i / / 10 ] = = 1 o r d [ i % 10 ] = = 1 ) d[i]=(d[i // 10] == 1 or d [i \% 10]==1 ) d[i]=(d[i//10]==1ord[i%10]==1)

class Solution:
    def rotatedDigits(self, N: int) -> int:
        d = [0, 0, 1, -1, -1, 1, 1, -1, 0, 1] + [0] * (N - 9)
        for i in range(N + 1):
            if d[i // 10] == -1 or d[i % 10] == -1:
                d[i] = -1
            elif d[i // 10] == 1 or d[i % 10] == 1:
                d[i] = 1
        return d[:N+1].count(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值