零基础入门CV赛事—Task 3字符识别模型

本教程介绍如何从零开始构建一个基于CNN的字符识别模型,涵盖CNN的基本概念、结构,包括输入层、卷积层、池化层和全连接层,并通过Pytorch实现训练过程。
摘要由CSDN通过智能技术生成

本章开始构建一个字符识别模型,基于对赛题理解本章将构建一个定长多字符分类模型。

3 字符识别模型

本章将会讲解卷积神经网络(Convolutional Neural Network, CNN)的常见层,并从头搭建一个字符识别模型。

3.1 学习目标

  • 学习CNN基础和原理
  • 使用Pytorch框架构建CNN模型,并完成训练

3.2 CNN

3.2.1 CNN简介

卷积神经网络(全称Convolutional Neural Networks,简称 CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。
CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。

3.2.2 CNN结构

1.输入层

卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组 。由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。
与其它神经网络算法类似,由于使用梯度下降算法进行学习,卷积神经网络的输入特征需要进行标准化处理。若输入数据为像素,也可将分布于 的原始像素值归一化至 区间 [16] 。输入特征的标准化有利于提升卷积神经网络的学习效率和表现 [16] 。

2.隐含层

卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑,在一些更为现代的算法中可能有其他复杂构筑。在常见构筑中,卷积层和池化层为卷积神经网络特有。卷积层中的卷积核包含权重系数,而池化层不包含权重系数。以LeNet-5为例,3类常见构筑在隐含层中的顺序通常为:输入-卷积层-池化层-全连接层-输出。

2.1卷积层

卷积层的功能是对输入数据进行特征提取,其内部包含多个卷积核,组成卷积核的每个元素都对应一个权重系数和一个偏差量,类似于一个前馈神经网络的神经元。卷积层内每个神经元都与前一层中位置接近的区域的多个神经元相连,区域的大小取决于卷积核的大小,被称为“感受野“。

2.2池化层

在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。池化层包含预设定的池化函数,其功能是将特征图中单个点的结果替换为其相邻区域的特征图统计量。

2.3全连接层

全连接层位于卷积神经网络隐含层的最后部分,并只向其它全连接层传递信号。特征图在全连接层中会失去空间拓扑结构,被展开为向量。全连接层的作用则是对提取的特征进行非线性组合以得到输出,即全连接层本身不被期望具有特征提取能力,而是试图利用现有的高阶特征完成学习目标。
在一些卷积神经网络中,全连接层的功能可由全局均值池化(global average pooling)取代 [41] ,全局均值池化会将特征图每个通道的所有值取平均,即若有7×7×256的特征图,全局均值池化将返回一个256的向量,其中每个元素都是7×7,步长为7,无填充的均值池化。

4.输出层

对于图像分类问题,输出层使用逻辑函数或归一化指数函数输出分类标签 。在物体识别问题中,输出层可设计为输出物体的中心坐标、大小和分类。
在这里插入图片描述
LeNet5网络LeNet5网络

3.3 Pytorch构建CNN模型

在Pytorch中构建CNN模型非常简单,只需要定义好模型的参数和正向传播即可,Pytorch会根据正向传播自动计算反向传播。

在本章我们会构建一个非常简单的CNN,然后进行训练。这个CNN模型包括两个卷积层,最后并联6个全连接层进行分类。

import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self
天池赛事零基础入门语义分割-地表建筑物识别任务是一个面向初学者的语义分割竞赛。任务的目标是利用机器学习和计算机视觉技术,对卫星图像中的地表建筑物进行标记和识别。 在这个任务中,参赛者需要使用给定的训练数据集进行模型的训练和优化。训练数据集包含了一系列卫星图像和相应的像素级标注,标注了地表建筑物的位置。参赛者需要通过分析训练数据集中的图像和标注信息,来构建一个能够准确地识别出地表建筑物的模型。 参赛者需要注意的是,语义分割是指将图像中的每个像素进行分类,使得同一类别的像素具有相同的标签。因此,在地表建筑物识别任务中,参赛者需要将地表建筑物区域与其他区域进行区分,并正确地进行标记。这对于初学者来说可能是一个挑战,因此需要掌握基本的图像处理和机器学习知识。 参赛者可以根据自己的理解,选择合适的算法和模型来完成这个任务。常见的方法包括卷积神经网络(CNN),通过设计适当的网络结构和训练方式,提高模型的准确性和泛化能力。同时,数据预处理和数据增强技术也是提高模型性能的关键。参赛者可以通过对数据进行增强和扩充,提高模型的鲁棒性和识别能力。 最后,参赛者需要使用训练好的模型对测试数据集进行预测,并生成预测结果。这些预测结果将用于评估参赛者模型的性能和准确度。评估指标通常包括像素级准确度(Pixel Accuracy)和平均交并比(Mean Intersection over Union),参赛者需要根据这些指标来评估和改进自己的模型。 总之,通过参加这个任务,初学者可以通过实践和挑战来提高自己的图像处理和机器学习技能,并掌握语义分割的基本概念和方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值