Modeling生涯中的苦与乐

                                                                                               信仰与神同在,真理与经验同在

        土豆在黄土生长,某一天发现自己有个身份叫薯片。他变了,熟了!(Standing  on shoulder of Giants-iTuring)

以下是参考资料:

         【1】瓦普尼克(著),张学工(译). 统计学习理论的本质.  清华大学出版社,2000.

         【2】渡边澄夫 .  代数几何学习理论.  森北出版社,2006.

         【3】杉山将 .  图解机器学习. 人民邮电出版社,

                 (著有统计机器学习/Density Ratio Estimation in machine learning)

         【4】E . A .Bender ,数学模型引论. 科学普及出版社,1982.

         【5】C. L  戴姆,E. S . 艾维(著).数学构模原理. 海洋出版社 ,1985.

         【6】 欧阳亮,系统科学中数学模型. 山东大学出版社 ,1995.

            《Elements of  Statisical Learning》  Hastie, Tibshirani, Friedman

            《Machine Learning and Bayesian Reasoning》 David Barber

            《Introduction to Information Retireval》 Manning,Rhagavan,Shutze

            《 Introduction to Machine Learning 》 Rasmussen and Williams

          【7】丁秀林 ,任雪松, 《多元统计分析》Multivariate Statistical  Analysis

          【8】 黄海广  , 《斯坦福大学机器学习课程笔记》 ,2016.

          【9】Ethem  Alpaydin,  《Introduction  to  Machine Learning》

          【10】袁亚湘 ,《最优化理论与方法 》1997,科学出版社

          【11】Jorge Nocedal,Stephen Wright 《Numerical  Optimization》,2006,【适合非数值与科学计算的工程师比Boyd入门较容易】

          【12】 Shai Shalev-Shwartz,Shai Ben-David 《Understanding Machine Learning》 ,2014

          【13】Bengio ,Yoshua 《Learning Deep Architectures for AI》,【此书讲解了非常清晰的deep learning的philosophy和results及其RBM原理,】

          【14】Yaser S .Abu-Mostafa, Mailk Magdon-ismail,Hsuan-TienLin ,2012《Learning From Data》(学习问题的一般可行性,经验风险和期望风险的gap理论)

          【15】Gregorie Montavon, Genevieve orr,Klaus-Robert Muller ,《Neural Networks:Tricks of the Trade》,2013

          【16】Gareth James ,Daniela Witten,Trevor Hastie ,Robert Tibshirani 《An Introduction to Startisical Learning》

          【17】 Element of statistical learning的R语言

          【18】Stephen Boyd ,Lieven Vandenberghe 《 Convex Optimization》  2004

          【19】Larry Wasserman  《All of Statistics》 2004

            [ 20]   David J.C.MacKay《Information Theory ,Inference and learning Alogorithms》  2003

          【21】 Peter Harrington  《Machine Learning in Action》  2012

          【22】Tom M Mitchell《machine learning》

           【23】郑捷 ,《机器学习算法原理与编程实践》中国工信出版集团 电子工业出版社

           【24】Daphne Koller,Nir Friedman,The MIT Press《Probabilistic Graphical Models》2009

           【25】Mehryar Mohri ,Afshin Rostamizadeh,Ameet Talwalkar,《Foundations of Machine Learning》2012

           【26】Trevor Hastie,Robert Tibshirani,Jerome Friedman 《The Elements of statistical learning》2008

           【27】史蒂芬-斯蒂格勒  《统计学七支柱》2018

机器学习专门的期刊资源:

        Machine Learning(机器学习):Journal  of  Machine Learning Reseach(机器学习研究):以神经网络为主的有  Neural  Computation(神经计算):Neural  Networks(神经网络):IEEE Transactions on  Neural  Networks:

      http://nbviewer.jupyter.org/github/lijin-THU/notes-machine-learning/blob/master/ReadMe.ipynb

        http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B

      http://cs.stanford.edu/people/karpathy/

      http://karpathy.github.io/

      http://kaiminghe.com/

      框架:Mxnet/Gluon 
     教程的网页资料:http://zh.gluon.ai 
     教程的GitHub地址:https://github.com/mli/cvpr17    https://zhuanlan.zhihu.com/p/23781756

     https://homes.cs.washington.edu/~tqchen/projects.html  陈天奇https://xgboost.readthedocs.io/en/latest/model.html

    :这个过程中我参考了一些资料如果有类同或错误请您提供相关信息图片至yunxinan@outlook.com 的邮箱我会尽快修改,谢谢各位指导。本人现

读学生在某些方面肯定存在缺陷和不足希望各位不吝其啬的指教,此博客所有资料仅供学术参考如有雷同请联系删除。有关信息来源地址:github 、reddit、stackoverflow,segmentfault、CSDN、等

 

:接下来我会从符号的含义开始最后写到工程中的一些发现。感谢一直以来帮助我的师兄,师姐和指导我的老师和我的家人,在家人肯定性的支持下

我才坚持到现在,在我精神世界和物质世界之唯一留下不可磨灭的印记。深度学习中的神经计算原理及其功能特性数学理论比较复杂,希望做基础实验的博友们研读多元统计分析,以上资料仅供学术参考。

一个特别优秀的网址: https://arxiv.org/corr/home这里顺便分享一个写书教程:http://www.chengweiyang.cn/gitbook/gitbook.com/edit.html

                                               重要的术语

          adaline       adaptive linear elem深 

                                               重要的术语

          adaline       adaptive linear element ,    自适应线性单元

           AIC           Akaike,s information theoretic criterion ,Akaike的信息论准测

           AND          AND logic function ,  与逻辑函数

           ANN          artificial neural network,  人工神经网络

           APEX        adaptive pricipal component extraction ,自适应主成分提取

           ARMA       autoregressive moving average,  自动回归平滑平均

           ARMAX     autoregerssive moving average with exogenous inputs,  外部输入性自回归平滑平均

           BER         bit error rate  位误差率

           BFGS       Broyden-FLetcher-Goldfarb—Shanno,修正牛顿法(通过对函数的泰勒展开式进行误差分析,提出了对二次模型进行改进的新模型,在此基础上得到了改进的拟牛顿条件,并得到了与其相应的Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法.证明了在适当条件下该算法全局收敛.从试验函数库中选择标准测试函数,对经典的BFGS算法与改进的BFGS算法进行数值试验,试验结果表明改进的算法优于经典的BFGS算法.)

           BIBO      bounded-input bounded-output,  有界输入和有界输出

           BP         backpropagation ,  反向传播

           CAM      content addressable memory,按照内容的寻址记忆

           CLS       Classical least-squares,经典的最小二乘法

           CPCA     constrained PCA,约束PCA(主成分)

           DOA      direction ofarrival,到达方向

           DPC      discrete Picard condition, 离散皮卡条件

           DTLFNN distributed time lagged feedforward neural network,  分布式的时间滞前网络

           EVD     eigenvalue decomposition, 特征值分解

           FFPA    fats fixed-point algorithm, 快速的固定点算法

           FFT     fast Fourier transform,快速傅里叶变换

           FIR     finite impulse response , 有限冲击反应

           FMMC fuzzy min-maxclassifier ,模糊最小-最大分类器

           GHA   generalized Hebbian algorithm,广义Hebb算法

ent ,    自适应线性单元

 

           AIC           Akaike,s information theoretic criterion ,Akaike的信息论准测

           AND          AND logic function ,  与逻辑函数

           ANN          artificial neural network,  人工神经网络

           APEX        adaptive pricipal component extraction ,自适应主成分提取

           ARMA       autoregressive moving average,  自动回归平滑平均

           ARMAX     autoregerssive moving average with exogenous inputs,  外部输入性自回归平滑平均

           BER         bit error rate  位误差率

           BFGS       Broyden-FLetcher-Goldfarb—Shanno,修正牛顿法(通过对函数的泰勒展开式进行误差分析,提出了对二次模型进行改进的新模型,在此基础上得到了改进的拟牛顿条件,并得到了与其相应的Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法.证明了在适当条件下该算法全局收敛.从试验函数库中选择标准测试函数,对经典的BFGS算法与改进的BFGS算法进行数值试验,试验结果表明改进的算法优于经典的BFGS算法.)

           BIBO      bounded-input bounded-output,  有界输入和有界输出

           BP         backpropagation ,  反向传播

           CAM      content addressable memory,按照内容的寻址记忆

           CLS       Classical least-squares,      经典的最小二乘法

           CPCA     constrained PCA,              约束PCA(主成分)

           DOA      direction ofarrival,              到达方向

           DPC      discrete Picard condition,  离散皮卡条件

           DTLFNN distributed time lagged feedforward neural network,  分布式的时间滞前网络

           EVD     eigenvalue decomposition, 特征值分解

           FFPA    fats fixed-point algorithm,  快速的固定点算法

           FFT     fast Fourier transform,        快速傅里叶变换

           FIR     finite impulse response ,     有限冲击反应

           FMMC fuzzy min-maxclassifier ,    模糊最小-最大分类器

           GHA   generalized Hebbian algorithm,广义Hebb算法

       最近发现一款应用按照说明感觉比较厉害,VTime是一款主打VR社交产品,可以使用google Cardbord,Gear VR或者用手机观看360度图像和视频。Slack一样掀起了一场职场沟通的革命,也同时成为全球上升最快的创业公司 。

      DermaCompare一款医疗机器学习的应用神器

 

 

 

 

                        

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值